Browsing by Subject "Visual interpretation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Kanser tanısı için kolon bezlerinin matematiksel analizi(IEEE, 2009-04) Çığır, Celal; Sökmensüer, C.; Gündüz-Demir, ÇiğdemNeoplastic diseases including cancer cause organizational changes in tissues. Histopathological examination, which is routinely used for the diagnosis and grading of these diseases, relies on pathologists to identify such tissue changes under a microscope. However, as this examination mainly relies on the visual interpretation of pathologists, it may lead to a considerable amount of subjectivity. To reduce the subjectivity level, it is proposed to use computational methods that provide objective measures. These methods quantify the tissue changes associated with disease by defining features on tissue images. In this paper, colon glands are mathematically analyzed making use of different feature extraction approaches. In this analysis, morphological, intensity-based, and textural features are investigated and glands are classified using these features. Working on the images of 108 colon tissues of 36 patients, our experiments demonstrate that this classification leads to promising results for differentiating normal glands from the cancerous ones. ©2009 IEEE.Item Open Access Kelime histogram modeli ile histopatolojik görüntü sınıflandırılması(IEEE, 2011-04) Özdemir, Erdem; Sökmensüer, C.; Gündüz-Demir, ÇiğdemColon cancer, which is one of the most common cancer type, could be cured with its early diagnosis. In the current practice of medicine, there are many screening techniques such as colonoscopy, sigmoidoscopy, and stool test, however the most effective and most widely used method for cancer diagnosis is to take tissue sections with biopsy and examine them under a microscope. As this examination is based on visual interpretation, it may lead to subjective decisions and diagnostic differences among pathologists. The need of reducing inter-variability in cancer diagnosis has led to studies for extraction of features from biopsy images and development of algorithms that give objective results. In this paper, we propose a method for the automated classification of a colon tissue image with the features extracted from a histogram that models the existence of image regions determined in an unsupervised way. Experiments on colon tissue images show that the proposed method leads to more successful results compared to its counterparts. Moreover, the proposed method, which uses color intensities for feature extraction, has the potential of giving better results with the use of additional features. © 2011 IEEE.