Browsing by Subject "Vapor deposition"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Characterization of AlInN/AlN/GaN heterostructures with different AlN buffer thickness(Springer New York LLC, 2016) Çörekçi, S.; Dugan, S.; Öztürk, M. K.; Çetin, S. Ş.; Çakmak, M.; Özçelik, S.; Özbay, EkmelTwo AlInN/AlN/GaN heterostructures with 280-nm- and 400-nm-thick AlN buffer grown on sapphire substrates by metal-organic chemical vapor deposition (MOCVD) have been investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and Hall-effect measurements. The symmetric (0002) plane with respect to the asymmetric (101 ¯ 2) plane in the 280-nm-thick AlN buffer has a higher crystal quality, as opposed to the 400-nm-thick buffer. The thinner buffer improves the crystallinity of both (0002) and (101 ¯ 2) planes in the GaN layers, it also provides a sizeable reduction in dislocation density of GaN. Furthermore, the lower buffer thickness leads to a good quality surface with an rms roughness of 0.30 nm and a dark spot density of 4.0 × 108 cm−2. The optical and transport properties of the AlInN/AlN/GaN structure with the relatively thin buffer are compatible with the enhancement in its structural quality, as verified by XRD and AFM results.Item Open Access Examination of the temperature related structural defects of InGaN/GaN solar cells(Academic Press, 2015) Durukan, İ. K.; Bayal, Ö.; Kurtuluş, G.; Baş, Y.; Gültekin, A.; Öztürk, M. K.; Çörekçi, S.; Tamer, M.; Özçelik, S.; Özbay, EkmelIn this study the effects of the annealing temperature on the InGaN/GaN solar cells with different In-contents grown on sapphire substrate by the Metal Organic Chemical Vapor Deposition (MOCVD) are analyzed by High Resolution X-ray Diffraction (HRXRD) and an Atomic Force Microscope (AFM). The plane angles, mosaic crystal sizes, mixed stress, dislocation intensities of the structure of the GaN and InGaN layers are determined. According to the test results, there are no general characteristic trends observed due to temperature at both structures. There are fluctuating failures determined at both structures as of 350 °C. The defect density increased on the GaN layer starting from 350 °C and reaching above 400 °C. A similar trend is observed on the InGaN layer, too.Item Open Access Nanoscale tribology of graphene grown by chemical vapor deposition and transferred onto silicon oxide substrates(Cambridge University Press, 2016) Demirbaş, T.; Baykara, M. Z.We present a comprehensive nanoscale tribological characterization of single-layer graphene grown by chemical vapor deposition (CVD) and transferred onto silicon oxide (SiO2) substrates. Specifically, the nanotribological properties of graphene samples are studied via atomic force microscopy (AFM) under ambient conditions using calibrated probes, by measuring the evolution of friction force with increasing normal load. The effect of using different probes and post-transfer cleaning procedures on frictional behavior is evaluated. A new method of quantifying lubrication performance based on measured friction coefficient ratios of graphene and SiO2 is introduced. A comparison of lubrication properties with mechanically-exfoliated graphene is performed. Results indicate that CVD-grown graphene constitutes a very good solid lubricant on SiO2, reducing friction coefficients by ∼ 90% for all investigated samples. Finally, the effect of wrinkles associated with CVD-grown graphene on measured friction values is quantitatively analyzed, with results revealing a substantial increase in friction on these structural defects.Item Open Access Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition(2012) Ozgit, C.; Donmez I.; Alevli, M.; Bıyıklı, NecmiWe report on the self-limiting growth and characterization of aluminum nitride (AlN) thin films. AlN films were deposited by plasma-enhanced atomic layer deposition on various substrates using trimethylaluminum (TMA) and ammonia (NH 3). At 185 °C, deposition rate saturated for TMA and NH 3 doses starting from 0.05 and 40 s, respectively. Saturative surface reactions between TMA and NH 3 resulted in a constant growth rate of ∼ 0.86 Å/cycle from 100 to 200 °C. Within this temperature range, film thickness increased linearly with the number of deposition cycles. At higher temperatures (≤ 225 °C) deposition rate increased with temperature. Chemical composition and bonding states of the films deposited at 185 °C were investigated by X-ray photoelectron spectroscopy. High resolution Al 2p and N 1s spectra confirmed the presence of AlN with peaks located at 73.02 and 396.07 eV, respectively. Films deposited at 185 °C were polycrystalline with a hexagonal wurtzite structure regardless of the substrate selection as determined by grazing incidence X-ray diffraction. High-resolution transmission electron microscopy images of the AlN thin films deposited on Si (100) and glass substrates revealed a microstructure consisting of nanometer sized crystallites. Films exhibited an optical band edge at ∼ 5.8 eV and an optical transmittance of > 95% in the visible region of the spectrum. © 2011 Elsevier B.V. All rights reserved.