Browsing by Subject "Underdetermined systems"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Parallel minimum norm solution of sparse block diagonal column overlapped underdetermined systems(Association for Computing Machinery, 2017) Torun, F. S.; Manguoglu, M.; Aykanat, CevdetUnderdetermined systems of equations in which the minimum norm solution needs to be computed arise in many applications, such as geophysics, signal processing, and biomedical engineering. In this article, we introduce a new parallel algorithm for obtaining the minimum 2-norm solution of an underdetermined system of equations. The proposed algorithm is based on the Balance scheme, which was originally developed for the parallel solution of banded linear systems. The proposed scheme assumes a generalized banded form where the coefficient matrix has column overlapped block structure in which the blocks could be dense or sparse. In this article, we implement the more general sparse case. The blocks can be handled independently by any existing sequential or parallel QR factorization library. A smaller reduced system is formed and solved before obtaining the minimum norm solution of the original system in parallel. We experimentally compare and confirm the error bound of the proposed method against the QR factorization based techniques by using true single-precision arithmetic. We implement the proposed algorithm by using the message passing paradigm. We demonstrate numerical effectiveness as well as parallel scalability of the proposed algorithm on both shared and distributed memory architectures for solving various types of problems. © 2017 ACM.Item Open Access Reordering sparse matrices into block-diagonal column-overlapped form(Elsevier, 2020) Acer, S.; Aykanat, CevdetMany scientific and engineering applications necessitate computing the minimum norm solution of a sparse underdetermined linear system of equations. The minimum 2-norm solution of such systems can be obtained by a recent parallel algorithm, whose numerical effectiveness and parallel scalability are validated in both shared- and distributed-memory architectures. This parallel algorithm assumes the coefficient matrix in a block-diagonal column-overlapped (BDCO) form, which is a variant of the block-diagonal form where the successive diagonal blocks may overlap along their columns. The total overlap size of the BDCO form is an important metric in the performance of the subject parallel algorithm since it determines the size of the reduced system, solution of which is a bottleneck operation in the parallel algorithm. In this work, we propose a hypergraph partitioning model for reordering sparse matrices into BDCO form with the objective of minimizing the total overlap size and the constraint of maintaining balance on the number of nonzeros of the diagonal blocks. Our model makes use of existing partitioning tools that support fixed vertices in the recursive bipartitioning paradigm. Experimental results validate the use of our model as it achieves small overlap size and balanced diagonal blocks.