Browsing by Subject "Ultra-wideband (UWB)"
Now showing 1 - 17 of 17
- Results Per Page
- Sort Options
Item Open Access Autonomous navigation of robotic units in mobile sensor network(2012) Nazlibilek, S.This work is motivated by the problem of detecting buried anti-tank and anti-personnel mines in roads or some border regions. The problem is tried to be solved by use of small mobile robotic sensors and their some abilities such as measurement of local fields, navigation around a region, communications with each other, and constituting team within a mission area. The aim of this work is to investigate the navigation problem for the team behavior of mobile sensors within a potential field available in a small-scale environment such as an indoor area or an outdoor region. The mobile sensor network here is a collection of robotic units with sensing capability of earth magnetic field anomalies. A new kind of positioning system is needed for their collective behavior. In this work, a new method of navigation is proposed as a local positioning system. It utilizes ultrasound and radio frequency information to determine the coordinates of the points inside the operational area. The method proposed here is compared with the ultra wideband ranging ping-pong method that is used widely in recent applications. A time division multiple access method is used for the communications among the mobile sensors. The results on the positioning methods together with several simulations and experimental works are given. It is shown that the positioning method utilizing ultrasound-radio frequency method can give fairly good results. © 2012 Elsevier Ltd. All rights reserved.Item Open Access A Bayesian approach to respiration rate estimation via pulse-based ultra-wideband signals(IEEE, 2009) Soǧancı, Hamza; Gezici, Sinan; Arıkan, OrhanIn this paper, theoretical limits on estimation of respiration rates via pulse-based ultra-wideband (UWB) signals are studied in the presence of prior information about respiration related signal parameters. First, a generalized Cramer-Rao lower bound (G-CRLB) expression is derived, and then simplified versions of the bound are obtained for sinusoidal displacement functions. In addition to the derivation of the theoretical limits, a two-step suboptimal estimator based on matched filter (correlation) processing and maximum a posteriori probability (MAP) estimation is proposed. It is shown that the proposed estimator performs very closely to the theoretical limits under certain conditions. Simulation results are presented to investigate the theoretical results.Item Open Access Coded-reference ultra-wideband systems(2008-09) Gezici, SinanTransmitted-reference (TR) and frequency-shifted reference (FSR) ultra-wideband (UWB) systems employ pairs of reference and data signals, which are shifted in the time and frequency domains, respectively, to facilitate low-to-medium data rate communications without the need for complex channel estimation and template signal generation. On the other hand, the recently proposed coded-reference (CR) UWB systems provide orthogonalization of the reference and data signals in the code domain, which has advantages in terms of performance and/or implementation complexity. In this paper, CR UWB systems are investigated. First, it is shown that a CR UWB system can be considered as a generalized non-coherent pulse-position modulated system. Then, an optimal receiver according to the Bayes decision rule is derived for CR UWB systems. In addition, the asymptotic optimality properties of the conventional CR UWB receivers are investigated. Finally, simulation results are presented to compare the performance of the optimal and conventional CR UWB receivers. ©2008 IEEE.Item Open Access Complementary spiral resonators for ultrawideband suppression of simultaneous switching noise in high-speed circuits(Electromagnetics Academy, 2014) Ghobadi, A.; Topalli K.; Bıyıklı, Necmi; Okyay, Ali KemalIn this paper, a novel concept for ultra-wideband simultaneous switching noise (SSN) mitigation in high-speed printed circuit boards (PCBs) is proposed. Using complementary spiral resonators (CSRs) etched on only a single layer of the power plane and cascaded co-centrically around the noise port, ultra-wideband SSN suppression by 30 dB is achieved in a frequency span ranging from 340MHz to beyond 10 GHz. By placing a slit in the co-centric rings, lower cut-off frequency is reduced to 150 MHz, keeping the rest of the structure unaltered. Finally, the power plane structure with modified complementary spiral resonators (MCSRs) is designed, fabricated, and evaluated experimentally. Measurement and simulation results are in well-agreement.Item Open Access Electrically controlled resistive switching assisted active ultra-broadband optical tunability in the infrared(IEEE, 2013) Battal, Enes; Özcan, Ayşe; Okyay, Ali KemalWe present an electrically tunable optical device with ultra-broadband tunability operating in 2-10 μm spectrum. We also, for the first time, optically observe resistive switching behavior in reflection measurements under electrical bias. © 2013 IEEE.Item Open Access Enhancements to threshold based range estimation for ultra-wideband systems(IEEE, 2014-09) Soğancı, Hamza; Gezici, Sinan; Güldoğan, M. B.Ultra-wideband (UWB) signals have very high time resolution, which makes them a very good candidate for range estimation based wireless positioning. Although the accuracy is the major concern for range estimation, it is also important to have low-complexity algorithms that can be employed in real time. In this study, two low-complexity range estimation algorithms are proposed for UWB signals, which achieve improved performance compared to the state-of-the-art low-complexity ranging algorithms. The proposed algorithms are inspired from two well-known algorithms; 'serial backward search' (SBS) and 'jump back and search forward' (JBSF). Performances of the proposed algorithms are compared with those of the SBS and JBSF algorithms based on real measurements. In addition, theoretical bounds are calculated in order to quantify the statistical performance of the algorithms. © 2014 IEEE.Item Open Access Implementation of a coded-reference ultra-wideband system(2011) Gürlevik, OsmanCoded-reference ultra-wideband (CR UWB) systems provide orthogonalization of the reference and data signals in the code domain to facilitate communications without the need for complex channel estimation and have significant advantages over the previous techniques in terms of performance and/or implementation complexity. This thesis presents a UWB testbed as a general experimental platform to explore pulse-based UWB communications and discusses design and implementation issues. A testbed is built as a flexible solution for hardware implementation of a CR UWB system.Item Open Access Interference mitigation and awareness for improved reliability(Cambridge University Press, 2011) Arslan, H.; Yarkan S.; Şahin, M. E.; Gezici, SinanWireless systems are commonly affected by interference from various sources. For example, a number of users that operate in the same wireless network can result in multiple-access interference (MAI). In addition, for ultrawideband (UWB) systems, which operate at very low power spectral densities, strong narrowband interference (NBI) can have significant effects on the communications reliability. Therefore, interference mitigation and awareness are crucial in order to realize reliable communications systems. In this chapter, pulse-based UWB systems are considered, and the mitigation of MAI is investigated first. Then, NBI avoidance and cancelation are studied for UWB systems. Finally, interference awareness is discussed for short-rate communications, next-generation wireless networks, and cognitive radios.Mitigation of multiple-access interference (MAI)In an impulse radio ultrawideband (IR-UWB) communications system, pulses with very short durations, commonly less than one nanosecond, are transmitted with a low-duty cycle, and information is carried by the positions or the polarities of pulses [1-5]. Each pulse resides in an interval called frame, and the positions of pulses within frames are determined according to time-hopping (TH) sequences specific to each user. The low-duty cycle structure together with TH sequences provide a multiple-access capability for IR-UWB systems [6].Although IR-UWB systems can theoretically accommodate a large number of users in a multiple-access environment [2, 4], advanced signal processing techniques are necessary in practice in order to mitigate the effects of interfering users on the detection of information symbols efficiently [6]. © Cambridge University Press 2011.Item Open Access Multiperson tracking with a network of ultrawideband radar sensors based on gaussian mixture PHD filters(Institute of Electrical and Electronics Engineers Inc., 2015) Gulmezoglu, B.; Guldogan, M. B.; Gezici, SinanIn this paper, we investigate the use of Gaussian mixture probability hypothesis density filters for multiple person tracking using ultrawideband (UWB) radar sensors in an indoor environment. An experimental setup consisting of a network of UWB radar sensors and a computer is designed, and a new detection algorithm is proposed. The results of this experimental proof-of-concept study show that it is possible to accurately track multiple targets using a UWB radar sensor network in indoor environments based on the proposed approach. © 2014 IEEE.Item Open Access Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation(OSA - The Optical Society, 2017) Liu, X.; Laegsgaard, J.; Iegorov, R.; Svane, A. S.; Ilday, F. Ö.; Tu, H.; Boppart, S. A.; Turchinovich, D.The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.Item Open Access Optimal and suboptimal receivers for code-multiplexed transmitted-reference ultra-wideband systems(Wiley, 2013) Tutay, M. E.; Gezici, SinanIn this study, optimal and suboptimal receivers are investigated for code-multiplexed transmitted-reference (CM-TR) ultra-wideband systems. First, a single-user scenario is considered, and a CM-TR system is modeled as a generalized noncoherent pulse-position modulated system. Based on that model, the optimal receiver that minimizes the bit error probability is derived. Then, it is shown that the conventional CM-TR receiver converges to the optimal receiver under certain conditions and achieves close-to-optimal performance in practical cases. Next, multi-user systems are considered, and the conventional receiver, blinking receiver, and chip discriminator are investigated. Also, the linear minimum mean-squared error (MMSE) receiver is derived for the downlink of a multi-user CM-TR system. In addition, the maximum likelihood receiver is obtained as a performance benchmark. The practicality and the computational complexity of the receivers are discussed, and their performance is evaluated via simulations. The linear MMSE receiver is observed to provide the best trade-off between performance and complexity/practicality.Item Open Access Performance analysis of code-multiplexed transmitted-reference ultra-wideband systems(IEEE, 2011) Tutay, Mehmet Emin; Gezici, Sinan; Poor H.V.In code-multiplexed transmitted-reference (CM-TR) ultra-wideband (UWB) systems, data signals and reference signals are transmitted using two distinct orthogonal codes. In this way, performance improvements and/or implementation advantages are obtained compared to transmitted-reference (TR) and frequency-shifted reference (FSR) ultra-wideband (UWB) systems. In this study, performance of CM-TR systems is investigated, and probability of error expressions are obtained. For the single user case, a closed-form expression for the exact probability of error is derived, whereas a Gaussian approximation, the accuracy of which depends on the number of frames per symbol, is considered for the multiuser case. Also, the maximum likelihood detector is derived, and numerical examples are presented. © 2011 IEEE.Item Open Access Performance limits on ranging with cognitive radio(IEEE, 2009-06) Dardari, D.; Karisan, Yasir; Gezici, Sinan; D'Amico, A. A.; Mengali, U.Cognitive radio is a promising paradigm for efficient utilization of the radio spectrum due to its capability to sense environmental conditions and adapt its communication and localization features. In this paper, the theoretical limits on time-of-arrival estimation for cognitive radio localization systems are derived in the presence of interference. In addition, an optimal spectrum allocation strategy which provides the best ranging accuracy limits is proposed. The strategy accounts for the constraints from the sensed interference level as well as from the regulatory emission mask. Numerical results are presented to illustrate the improvements that can be achieved by the proposed approach. © 2009 IEEE.Item Open Access Receiver design and performance analysis for code-multiplexed transmitted-reference ultra-wideband systems(2010) Tutay, Mehmet EminIn transmitted-reference (TR) and frequency-shifted reference (FSR) ultrawideband (UWB) systems, data and reference signals are shifted relative to each other in time and frequency domains, respectively. The main advantage of these systems is that they remove strict requirements of channel estimation. In order to implement TR UWB systems, an analog delay line, which is difficult to build in an integrated fashion, is needed. Although FSR systems require frequency conversion at the receiver, which is much simpler in practice, they have data rate limitations. Instead, a code-multiplexed transmitted-reference (CM-TR) UWB system that transmits data and reference signals using two distinct orthogonal codes can be considered. This system requires a simpler receiver and has better performance than TR and FSR. In the first part of the thesis, CM-TR systems are investigated and probability of error expressions are obtained. For the single user case, a closed-form expression for the exact probability of error is derived. For the multiuser case, a closed-form expression is derived based on the Gaussian approximation, and the results are compared in different scenarios. In the second part of the thesis, some optimal and suboptimal receivers are studied. First, low complexity receivers, such as the blinking receiver (BR) and the chip discriminator, are presented. The requirements for these types of receivers are explained, and the conditions under which their performance can be improved are discussed. Then, an analytical analysis of the linear minimum mean-squared error (MMSE) receiver and the requirements to implement this MMSE receiver are provided. Lastly, the optimal maximum-likelihood (ML) detector is derived, which has higher computational complexity and more strict requirements than the other receivers. Finally, simulation results are presented in order to verify the theoretical results and to compare the performance of the receivers.Item Open Access Theoretical limits for estimation of periodic movements in pulse-based UWB systems(Institute of Electrical and Electronics Engineers, 2007) Gezici, SinanIn this paper, Cramer-Rao lower bounds (CRLBs) for estimation of signal parameters related to periodically moving objects in pulse-based ultra-wideband (UWB) systems are presented. The results also apply to estimation of vital parameters, such as respiration rate, using UWB signals. In addition to obtaining the CRLBs, suboptimal estimation algorithms are also presented. First, a single-path channel with additive white Gaussian noise is considered, and closed-form CRLB expressions are obtained for sinusoidal object movements. Also, a two-step suboptimal algorithm is proposed, which is based on time delay estimation via matched filtering followed by least-squares estimation, and its asymptotic optimality property is shown in the limit of certain system parameters. Then, a multipath environment is considered, and exact and approximate CRLB expressions are derived. Moreover, suboptimal schemes for parameter estimation are studied. Simulation studies are performed for the estimation of respiration rates in order to evaluate the lower bounds and performance of the suboptimal algorithms for realistic system parameters.Item Open Access Two-step time of arrival estimation for pulse-based ultra-wideband systems(SpringerOpen, 2008) Gezici, Sinan; Sahinoglu Z.; Molisch, A. F.; Kobayashi, H.; Poor, H. V.In cooperative localization systems, wireless nodes need to exchange accurate position-related information such as time-of-arrival (TOA) and angle-of-arrival (AOA), in order to obtain accurate location information. One alternative for providing accurate position-related information is to use ultra-wideband (UWB) signals. The high time resolution of UWB signals presents a potential for very accurate positioning based on TOA estimation. However, it is challenging to realize very accurate positioning systems in practical scenarios, due to both complexity/cost constraints and adverse channel conditions such as multipath propagation. In this paper, a two-step TOA estimation algorithm is proposed for UWB systems in order to provide accurate TOA estimation under practical constraints. In order to speed up the estimation process, the first step estimates a coarse TOA of the received signal based on received signal energy. Then, in the second step, the arrival time of the first signal path is estimated by considering a hypothesis testing approach. The proposed scheme uses low-rate correlation outputs and is able to perform accurate TOA estimation in reasonable time intervals. The simulation results are presented to analyze the performance of the estimator.Item Open Access Ultra-wideband orthogonal pulse shape set design by using Hermite-Gaussian functions(IEEE, 2012) Alp, Yaşar Kemal; Dedeoǧlu, Mehmet; Arıkan, OrhanUltra-Wideband (UWB) communication systems have been developed for short distance, high data rate communications. To avoid interfering with the existing systems in the same environment, very short duration pulses used by these systems should satisfy a predefined spectral mask. Data rate of UWB systems can be increased by using multiple pulse shapes simultaneously. Orthogonality of the simultaneously used pulse shapes simplifies the receiver design. In this work, design of orthogonal pulse shapes which satisfy the spectral mask is modelled as an optimization problem. First, it is converted to a convex optimization problem by constraining the pulse shapes to lie in a subspace spanned by the Hermite-Gaussian (HG) functions. Then the optimal solution is obtained. It is shown that a larger pulse shape set can be designed compared to the existing approaches, and hence, a higher data rate can be achieved. © 2012 IEEE.