Browsing by Subject "Triethyl galliums"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Comparison of trimethylgallium and triethylgallium as "ga" source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition(AVS Science and Technology Society, 2016-02) Alevli, M.; Haider A.; Kizir S.; Leghari, S. A.; Bıyıklı, NecmiGaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.Item Open Access Effect of substrate temperature and Ga source precursor on growth and material properties of GaN grown by hollow cathode plasma assisted atomic layer deposition(IEEE, 2016) Haider, Ali; Kizir, Seda; Deminskyi, P.; Tsymbalenko, Oleksandr; Leghari, Shahid Ali; Bıyıklı, Necmi; Alevli, M.; Gungor, N.GaN thin films grown by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD) at two different substrate temperatures (250 and 450 °C) are compared. Effect of two different Ga source materials named as trimethylgallium (TMG) and triethylgallium (TEG) on GaN growth and film quality is also investigated and reviewed. Films were characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometery, and grazing incidence X-ray diffraction. GaN film deposited by TMG revealed better structural, chemical, and optical properties in comparison with GaN film grown with TEG precursor. When compared on basis of different substrate temperature, GaN films grown at higher substrate temperature revealed better structural and optical properties.