BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Triangular blocks"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Steady-state analysis of Google-like stochastic matrices
    (2007) Noyan, Gökçe Nil
    Many search engines use a two-step process to retrieve from the web pages related to a user’s query. In the first step, traditional text processing is performed to find all pages matching the given query terms. Due to the massive size of the web, this step can result in thousands of retrieved pages. In the second step, many search engines sort the list of retrieved pages according to some ranking criterion to make it manageable for the user. One popular way to create this ranking is to exploit additional information inherent in the web due to its hyperlink structure. One successful and well publicized link-based ranking system is PageRank, the ranking system used by the Google search engine. The dynamically changing matrices reflecting the hyperlink structure of the web and used by Google in ranking pages are not only very large, but they are also sparse, reducible, stochastic matrices with some zero rows. Ranking pages amounts to solving for the steady-state vectors of linear combinations of these matrices with appropriately chosen rank-1 matrices. The most suitable method of choice for this task appears to be the power method. Certain improvements have been obtained using techniques such as quadratic extrapolation and iterative aggregation. In this thesis, we propose iterative methods based on various block partitionings, including those with triangular diagonal blocks obtained using cutsets, for the computation of the steady-state vector of such stochastic matrices. The proposed iterative methods together with power and quadratically extrapolated power methods are coded into a software tool. Experimental results on benchmark matrices show that it is possible to recommend Gauss-Seidel for easier web problems and block Gauss-Seidel with partitionings based on a block upper triangular form in the remaining problems, although it takes about twice as much memory as quadratically extrapolated power method.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Steady-state analysis of google-like stochastic matrices with block iterative methods
    (Kent State University, 2011) Dayar, T.; Noyan, G. N.
    A Google-like matrix is a positive stochastic matrix given by a convex combination of a sparse, nonnegative matrix and a particular rank one matrix. Google itself uses the steady-state vector of a large matrix of this form to help order web pages in a search engine. We investigate the computation of the steady-state vectors of such matrices using block iterative methods. The block partitionings considered include those based on block triangular form and those having triangular diagonal blocks obtained using cutsets. Numerical results show that block Gauss-Seidel with partitionings based on block triangular form is most often the best approach. However, there are cases in which a block partitioning with triangular diagonal blocks is better, and the Gauss-Seidel method is usually competitive. Copyright © 2011, Kent State University.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback