Browsing by Subject "Transmission spectrums"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Experimental observation of cavity formation in composite metamaterials(Optical Society of American (OSA), 2008) Caglayan H.; Bulu I.; Loncar, M.; Özbay, EkmelIn this paper, we investigated one of the promising applications of left-handed metamaterials: composite metamaterial based cavities. Four different cavity structures operating in the microwave regime were constructed, and we observed cavity modes on the transmission spectrum with different quality factors. The effective permittivity and permeability of the CMM structure and cavity structure were calculated by use of a retrieval procedure. Subsequently, in taking full advantage of the effective medium theory, we modeled CMM based cavities as one dimensional Fabry-Perot resonators with a subwavelength cavity at the center. We calculated the transmission from the Fabry-Perot resonator model using the one-dimensional transfer matrix method, which is in good agreement with the measured result. Finally, we investigated the Fabry-Perot resonance phase condition for a CMM based cavity, in which the condition was satisfied at the cavity frequency. Therefore, our results show that it is possible to treat metamaterial based cavities as one-dimensional Fabry-Perot resonators with a subwavelength cavity. © 2008 Optical Society of America.Item Open Access Nested metamaterials for wireless strain sensing(IEEE, 2009-12-28) Melik, R.; Unal, E.; Perkgoz, N. K.; Santoni, B.; Kamstock, D.; Puttlitz, C.; Demir, Hilmi VolkanWe designed, fabricated, and characterized metamaterial-based RF-microelectromechanical system (RF-MEMS) strain sensors that incorporate multiple split ring resonators (SRRs) in a compact nested architecture to measure strain telemetrically. We also showed biocompatibility of these strain sensors in an animal model. With these devices, our bioimplantable wireless metamaterial sensors are intended, to enable clinicians, to quantitatively evaluate the progression of long-bone fracture healing by monitoring the strain on the implantable fracture fixation hardware in real time. In operation, the transmission spectrum of the metamaterial sensor attached to the implantable fixture is changed when an external load is applied to the fixture, and from this change, the strain is recorded remotely. By employing telemetric characterizations, we reduced the operating frequency and enhanced the sensitivity of our novel nested SRR architecture compared to the conventional SRR structure. The nested SRR structure exhibited a higher sensitivity of 1.09 kHz/kgf operating at lower frequency compared to the classical SRR that demonstrated a sensitivity of 0.72 kHz/kgf. Using soft tissue medium, we achieved the best sensitivity level of 4.00 kHz/kgf with our nested SRR sensor. Ultimately, the laboratory characterization and in vivo biocompatibility studies support further development and characterization of a fracture healing system based on implantable nested SRR.Item Open Access Observation of defect formation in metamaterials(OSA, 2008-10) Çağlayan, Hümeyra; Bulu, I.; Loncar, M.; Özbay, EkmelWe report subwavelength localization of electromagnetic fields within cavities based on metamaterials. Cavity resonances are observed in the transmission spectrum of a split ring resonator and composite metamaterials cavity structures. These cavity resonances are shown to exhibit high quality factors. Since the unit cells of metamaterials are much smaller than the operation wavelength, subwavelength localization is possible within these metamaterial cavity structures. In the present paper, we show that the electromagnetic field is localized into a region of λ/8, where λ is the cavity resonance wavelength.Item Open Access Spectral scalability and optical spectra of fractal multilayer structures: FDTD analysis(Springer Verlag, 2017) Şimsek, Şevket; Palaz, Selami; Mamedov, Amirullah M.; Özbay, EkmelAn investigation of the optical properties and band structures for the conventional and Fibonacci photonic crystals (PCs) based on SrTiO3 and Sb2Te3 is made in the present research. Here, we use one-dimensional SrTiO3- and Sb2Te3-based layers. We have theoretically calculated the photonic band structure and transmission spectra of SrTiO3- and Sb2Te3-based PC superlattices. The position of minima in the transmission spectrum correlates with the gaps obtained in the calculation. The intensity of the transmission depths is more intense in the case of higher refractive index contrast between the layers. © 2016, Springer-Verlag Berlin Heidelberg.Item Open Access Two-dimensional ferroelectric photonic crystals: Optics and band structure(Taylor & Francis Inc., 2013-09-20) Simsek S.; Mamedov, A. M.; Özbay, EkmelIn this report we present an investigation of the optical properties and band structure calculations for the photonic structures based on the functional materials- ferroelectrics. A theoretical approach to the optical properties of the 2D and 3D photonic crystals which yields further insight in the phenomenon of the reflection from different families of lattice planes in relation to the presence of photonic gaps or photonic bands. We calculate the photonic bands and optical properties of LiNbO3 based photonic crystals. Calculations of reflection and transmission spectra show the features correspond to the onset of diffraction, as well as to additional reflectance structures at large values of the angle of incidence. © 2013 Copyright Taylor and Francis Group, LLC.