Browsing by Subject "Transmission measurements"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Microfluidics for reconfigurable electromagnetic metamaterials(AIP Publishing, 2009) Kasirga, T. S.; Ertas, Y. N.; Bayındır, MehmetWe propose microfluidics as a useful platform for reconfigurable electromagnetic metamaterials. Microfluidic split-ring resonators (MF-SRRs) are fabricated inside a flexible elastomeric material by employing rapid prototyping. The transmission measurements performed for mercury-injected MF-SRR exhibits sharp magnetic resonances at microwave wavelengths. We further calculate transmission properties of the MF-SRR array and the effect of electrical conductivity of the liquid inside the channel on the magnetic resonance. The measured results agree well with numerical calculations. Our proposal may open up directions toward switchable metamaterials and reconfigurable devices such as filters, switches, and resonators.Item Open Access Negative phase advance in polarization independent, multi-layer negative-index metamaterials(Optical Society of American (OSA), 2008) Aydın, Koray; Zhaofeng, Li; Şahin, Levent; Özbay, EkmelWe demonstrate a polarization independent negative-index metamaterial (NIM) at microwave frequencies. Transmission measurements and simulations predict a left-handed transmission band with negative permittivity and negative permeability. A negative-index is verified by using the retrieval procedure. Effective parameters of single-layer and twolayer NIMs are shown to be different. Negative phase advance is verified within the negative-index regime by measuring the phase shift between different sized negative-index metamaterials. Backward wave propagation is observed in the numerical simulations at frequencies where the phase advance is negative. ©2008 Optical Society of America.Item Open Access Transmission properties of composite metamaterials in free space(American Institute of Physics, 2002) Bayındır, Mehmet; Aydin, K.; Özbay, Ekmel; Markoš, P.; Soukoulis, C. M.We propose and demonstrate a type of composite metamaterial which is constructed by combining thin copper wires and split ring resonators (SRRs) on the same board. The transmission measurements performed in free space exhibit a passband within the stop bands of SRRs and thin wire structures. The experimental results are in good agreement with the predictions of the transfer matrix method simulations. © 2002 American Institute of Physics.