Browsing by Subject "Trajectory tracking"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Design and trajectory tracking control of a piezoelectric nano-manipulator with actuator saturations(Academic Press, 2018) Liu, P.; Yan, P.; Özbay, HitayThis paper presents the design of an XYZ nano-manipulator as well as the model based high precision tracking control of the nano-manipulating system. Aiming at large range and high mechanical bandwidth, the proposed mechanical design employs compound bridge-type amplifiers to increase the workspace without significant drop of stiffness. To further improve the system tracking performance and avoid possible actuator saturations, a robust anti-windup tracking control architecture combining a parallel internal-model based controller and an anti-windup compensator is adopted for the trajectory tracking of the designed nano-manipulating system. As a theoretical extension on a recent result [17], we further investigate the robust stability condition of the closed-loop system and formulate the optimization design of the anti-windup compensators as a two block H∞ optimization problem solvable with the Nehari approach. Real time control experiments demonstrate excellent tracking performance and saturation compensation capability with tracking precision error less than 0.28%, which significantly outperforms relevant algorithms in the literature.Item Open Access Robust antiwindup compensation for high-precision tracking of a piezoelectric nanostage(Institute of Electrical and Electronics Engineers Inc., 2016) Liu, P.; Yan, P.; Zhang Z.; Özbay, HitayUltrahigh-precision tracking in nanomanipulations poses major challenges for mechanical design as well as servo control, due to the general confliction between the precision requirement and large stroke tracking. The situation is further complicated by input saturation, which is almost inevitable for microactuators. This paper presents a novel control architecture combining a parallel internal-model-based tracking design and a robust antiwindup control structure, such that asymptotic tracking can be achieved for nanoservo systems in the presence of saturation nonlinearity and model uncertainties. For the augmented system with internal-model dynamics, an I/O-based equivalent representation from control (free of saturation) to system output is derived by incorporating the dead-zone nonlinearity, saturation compensation blocks, as well internal-model units. The robustness condition on the saturation compensator is also derived based on the sector bound criterion and an H∞-optimal design is developed accordingly. The proposed robust antiwindup tracking control architecture is deployed on a customize-designed nanostage driven by a piezoelectric (PZT) actuator, where numerical simulations and real-time experiments demonstrate excellent tracking performance and saturation compensation capability, achieving tracking precision error less than 0.23%.