Browsing by Subject "Training dataset"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Developing a text categorization template for Turkish news portals(IEEE, 2011) Toraman, Çağrı; Can, Fazlı; Koçberber, SeyitIn news portals, text category information is needed for news presentation. However, for many news stories the category information is unavailable, incorrectly assigned or too generic. This makes the text categorization a necessary tool for news portals. Automated text categorization (ATC) is a multifaceted difficult process that involves decisions regarding tuning of several parameters, term weighting, word stemming, word stopping, and feature selection. In this study we aim to find a categorization setup that will provide highly accurate results in ATC for Turkish news portals. We also examine some other aspects such as the effects of training dataset set size and robustness issues. Two Turkish test collections with different characteristics are created using Bilkent News Portal. Experiments are conducted with four classification methods: C4.5, KNN, Naive Bayes, and SVM (using polynomial and rbf kernels). Our results recommends a text categorization template for Turkish news portals and provides some future research pointers. © 2011 IEEE.