BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Training and testing"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Düşme tespiti için sınıflandırma yöntemlerinin karşılaştırılması
    (IEEE, 2014-04) Çatalbaş, Bahadır; Yücesoy, Burak; Seçer, G.; Aslan, Murat
    Bu bildiride giyilebilir yapıda olan ve üç boyutlu ölçüm alabilen bir ivmeölçerin çıktılarını kullanarak düşme tespiti yapan farklı algoritmaların karşılaştırılması yapılmıştır. Karşılaştırma amacıyla destek vektör makineleri, yapay sinir ağları ile elde edilen sınıflandırıcılar ve kural bazlı bir sınıflandırıcı kullanılmıştır. Sınıflandırıcıların tasarlanması ve dogrulanması amacıyla 7 farklı denekten üçer defa düşme ve düşme dışındaki günlük aktivitelere ilişkin ivmeölçer verileri toplanmıştır. Yapılan karşılaştırma sonucunda tespit doğruluğu en yüksek algoritmanın %87,76 ile destek vektör makineleri olduğu bulunmuştur. En yüksek düşme tespit oranı da %90,91 ˘ olarak kural bazlı sınıflandırıcı kullanımıyla elde edilmiştir. En yüksek özgüllük oranı %89,47 ile yine destek vektör makineleri ile elde edilmiştir.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    GCap: Graph-based automatic image captioning
    (IEEE, 2004) Pan J.-Y.; Yang H.-J.; Faloutsos C.; Duygulu, Pınar
    Given an image, how do we automatically assign keywords to it? In this paper, we propose a novel, graph-based approach (GCap) which outperforms previously reported methods for automatic image captioning. Moreover, it is fast and scales well, with its training and testing time linear to the data set size. We report auto-captioning experiments on the "standard" Corel image database of 680 MBytes, where GCap outperforms recent, successful auto-captioning methods by up to 10 percentage points in captioning accuracy (50% relative improvement). © 2004 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback