Browsing by Subject "Traffic modeling"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems(Institute of Electrical and Electronics Engineers, 2018) Li, N.; Oyler, D.W.; Zhang M.; Yildız, Yıldıray; Kolmanovsky, I.; Girard, A. R.Autonomous driving has been the subject of increased interest in recent years both in industry and in academia. Serious efforts are being pursued to address legal, technical, and logistical problems and make autonomous cars a viable option for everyday transportation. One significant challenge is the time and effort required for the verification and validation of the decision and control algorithms employed in these vehicles to ensure a safe and comfortable driving experience. Hundreds of thousands of miles of driving tests are required to achieve a well calibrated control system that is capable of operating an autonomous vehicle in an uncertain traffic environment where interactions among multiple drivers and vehicles occur simultaneously. Traffic simulators where these interactions can be modeled and represented with reasonable fidelity can help to decrease the time and effort necessary for the development of the autonomous driving control algorithms by providing a venue where acceptable initial control calibrations can be achieved quickly and safely before actual road tests. In this paper, we present a game theoretic traffic model that can be used to: 1) test and compare various autonomous vehicle decision and control systems and 2) calibrate the parameters of an existing control system. We demonstrate two example case studies, where, in the first case, we test and quantitatively compare two autonomous vehicle control systems in terms of their safety and performance, and, in the second case, we optimize the parameters of an autonomous vehicle control system, utilizing the proposed traffic model and simulation environment. IEEEItem Open Access MPLS automatic bandwidth allocation via adaptive hysteresis(Elsevier, 2010-11-29) Akar, N.; Toksöz, M. A.MPLS automatic bandwidth allocation (or provisioning) refers to the process of dynamically updating the bandwidth allocation of a label switched path on the basis of actual aggregate traffic demand on this path. Since bandwidth updates require signaling, it is common to limit the rate of updates to reduce signaling costs. In this article, we propose a model-free asynchronous adaptive hysteresis algorithm for MPLS automatic bandwidth allocation under bandwidth update rate constraints. We validate the effectiveness of the proposed approach by comparing it against existing schemes in (i) voice and (ii) data traffic scenarios. The proposed method can also be used in more general GMPLS networks.