Browsing by Subject "Tracking performance"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access The Krylov-proportionate normalized least mean fourth approach: formulation and performance analysis(Elsevier BV, 2015) Sayin, M. O.; Yilmaz, Y.; Demir, A.; Kozat, S. S.We propose novel adaptive filtering algorithms based on the mean-fourth error objective while providing further improvements on the convergence performance through proportionate update. We exploit the sparsity of the system in the mean-fourth error framework through the proportionate normalized least mean fourth (PNLMF) algorithm. In order to broaden the applicability of the PNLMF algorithm to dispersive (non-sparse) systems, we introduce the Krylov-proportionate normalized least mean fourth (KPNLMF) algorithm using the Krylov subspace projection technique. We propose the Krylov-proportionate normalized least mean mixed norm (KPNLMMN) algorithm combining the mean-square and mean-fourth error objectives in order to enhance the performance of the constituent filters. Additionally, we propose the stable-PNLMF and stable-KPNLMF algorithms overcoming the stability issues induced due to the usage of the mean fourth error framework. Finally, we provide a complete performance analysis, i.e.; the transient and the steady-state analyses, for the proportionate update based algorithms, e.g.; the PNLMF, the KPNLMF algorithms and their variants; and analyze their tracking performance in a non-stationary environment. Through the numerical examples, we demonstrate the match of the theoretical and ensemble averaged results and show the superior performance of the introduced algorithms in different scenarios.Item Open Access Learning based cross-coupled control for multi-axis high precision positioning systems(ASME, 2012-10) Geçer-Ulu, Nurcan; Ulu, Erva; Çakmakçı, MelihIn this paper, a controller featuring cross-coupled control and iterative learning control schemes is designed and implemented on a modular two-axis positioning system in order to improve both contour and tracking accuracy. Instead of using the standard contour estimation technique proposed with the variable gain cross-coupled control, a computationally efficient contour estimation technique is incorporated with the presented control design. Moreover, implemented contour estimation technique makes the presented control scheme more suitable for arbitrary nonlinear contours. Effectiveness of the control design is verified with simulations and experiments on a two-axis positioning system. Also, simulations demonstrating the performance of the control method on a three-axis positioning system are provided. The resulting controller is shown to achieve nanometer level contouring and tracking performance. Simulation results also show its applicability to three-axis nano-positioning systems. Copyright © 2012 by ASME.Item Open Access Oscillatory synchronization model of attention to moving objects(Elsevier, 2012) Yilmaz, O.The world is a dynamic environment hence it is important for the visual system to be able to deploy attention on moving objects and attentively track them. Psychophysical experiments indicate that processes of both attentional enhancement and inhibition are spatially focused on the moving objects; however the mechanisms of these processes are unknown. The studies indicate that the attentional selection of target objects is sustained via a feedforward-feedback loop in the visual cortical hierarchy and only the target objects are represented in attention-related areas. We suggest that feedback from the attention-related areas to early visual areas modulates the activity of neurons; establishes synchronization with respect to a common oscillatory signal for target items via excitatory feedback, and also establishes de-synchronization for distractor items via inhibitory feedback. A two layer computational neural network model with integrate-and-fire neurons is proposed and simulated for simple attentive tracking tasks. Consistent with previous modeling studies, we show that via temporal tagging of neural activity, distractors can be attentively suppressed from propagating to higher levels. However, simulations also suggest attentional enhancement of activity for distractors in the first layer which represents neural substrate dedicated for low level feature processing. Inspired by this enhancement mechanism, we developed a feature based object tracking algorithm with surround processing. Surround processing improved tracking performance by 57% in PETS 2001 dataset, via eliminating target features that are likely to suffer from faulty correspondence assignments. © 2012 Elsevier Ltd.