BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Time sharing"

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Average capacity maximization via channel switching in the presence of additive white Gaussian noise channels and switching delays
    (Institute of Electrical and Electronics Engineers Inc., 2016) Sezer, A. D.; Gezici, Sinan
    The optimal channel switching problem is studied for average capacity maximization in the presence of additive white Gaussian noise channels and channel switching delays. First, an optimization problem is formulated for the maximization of the average channel capacity, considering channel switching delays and constraints on average and peak powers. Then, an equivalent optimization problem is obtained to facilitate theoretical investigations. The optimal strategy is derived and the corresponding average capacity is specified when channel switching is performed among a given number of channels. Based on this result, it is shown that channel switching among more than two different channels is not optimal. In addition, the maximum average capacity achieved by the optimal channel switching strategy is formulated as a function of the channel switching delay parameter and the average and peak power limits. Then, scenarios under which the optimal strategy corresponds to the exclusive use of a single channel or to channel switching between two channels are described. Furthermore, sufficient conditions are obtained to determine when the optimal single channel strategy outperforms the optimal channel switching strategy. The numerical results are presented to provide the examples of the theoretical results and to illustrate the effects of channel switching delays. © 2002-2012 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Maximization of correct decision probability via channel switching over Rayleigh fading channels
    (IEEE, 2016) Keskin, Musa Furkan; Kurt, Mehmet Necip; Tutay, Mehmet Emin; Gezici, Sinan; Arıkan, Orhan
    In this study, optimal channel switching (time sharing) strategies are investigated under average power and cost constraints in order to maximize the average number of correctly received symbols between a transmitter and a receiver that are connected via multiple additive Gaussian noise channels. The optimal strategy is shown to perform channel switching either among at most three channels with full channel utilization (i.e., no idle periods), or between at most two channels with partial channel utilization. In addition, it is stated that the optimal solution must operate at the maximum average power and the maximum average cost, which facilitates low-complexity approaches for calculating the optimal strategy. For two-channel strategies, an upper bound in terms of the noise standard deviations of the employed channels is provided for the ratio between the optimal power levels. Furthermore, a simple condition depending solely on the systems parameters is derived, under which partial channel utilization cannot be optimal. Numerical examples are presented to demonstrate the validity of the theoretical results.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optimal channel switching for average capacity maximization in the presence of switching delays
    (IEEE, 2016) Sezer, Ahmet Dündar; Gezici, Sinan
    In this study, the optimal channel switching problem is investigated for average capacity maximization in the presence of channel switching delays. First, the optimal strategy is obtained and the corresponding average capacity is derived when channel switching is performed among a given number of channels. Then, it is proved that channel switching among more than two different channels is not optimal. Also, the maximum average capacity achieved by the optimal channel switching strategy is expressed as a function of the channel switching delay parameter and the average and peak power limits. Then, scenarios in which the optimal strategy corresponds to the use of a single channel or to channel switching between two channels are described. Numerical examples are presented for showing the effects of channel switching delays.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optimal channel switching in multiuser systems under average capacity constraints
    (Elsevier, 2017) Sezer, A. D.; Gezici, Sinan
    In this paper, the optimal channel switching problem is studied for average capacity maximization in the presence of multiple receivers in the communication system. First, the optimal channel switching problem is proposed for average capacity maximization of the communication between the transmitter and the secondary receiver while fulfilling the minimum average capacity requirement of the primary receiver and considering the average and peak power constraints. Then, an alternative equivalent optimization problem is provided and it is shown that the solution of this optimization problem satisfies the constraints with equality. Based on the alternative optimization problem, it is obtained that the optimal channel switching strategy employs at most three communication links in the presence of multiple available channels in the system. In addition, the optimal strategies are specified in terms of the number of channels employed by the transmitter to communicate with the primary and secondary receivers. Finally, numerical examples are provided in order to verify the theoretical investigations.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optimal channel switching strategy for average capacity maximization
    (Institute of Electrical and Electronics Engineers Inc., 2015) Sezer, A. D.; Gezici, Sinan; Inaltekin, H.
    In this study, an optimal channel switching strategy is proposed for average capacity maximization in the presence of average and peak power constraints. Necessary and sufficient conditions are derived to determine when the proposed optimal channel switching strategy can or cannot outperform the optimal single channel strategy, which performs no channel switching. Also, it is obtained that the optimal channel switching strategy can be realized by channel switching between, at most, two different channels. In addition, a low-complexity optimization problem is derived to obtain the optimal channel switching strategy. Furthermore, based on some necessary conditions that need to be satisfied by the optimal channel switching solution, an alternative approach is proposed for calculating the optimal channel switching strategy. Numerical examples are provided to exemplify the derived theoretical results and to provide intuitive explanations. © 2015 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optimal time sharing strategies for parameter estimation and channel switching problems
    (2014) Soğancı, Hamza
    Time sharing (randomization) can offer considerable amount of performance improvement in various detection and estimation problems and communication systems. In the first three chapters of this dissertation, time sharing among different signal levels is considered for parametric estimation problems. In the final chapter, time sharing among different channels is investigated for an average power constrained communication system. In the first chapter, the aim is to improve the performance of a single fixed estimator by the optimal stochastic design of signal values corresponding to parameters. It is obtained that the optimal parameter design corresponds to time sharing between at most two different signal values. In the second chapter, the problem in the first chapter is generalized to a scenario where there are multiple parameters and multiple estimators. In this scenario, two different cost functions are considered. The first cost function is the total risk of all the estimators. The optimal solution for this case is time sharing between at most two different signal values. The second cost function is the maximum risk of all the estimators. For this case, it is shown that the optimal parameter design is time sharing among at most three different signal values. In the third chapter, the linear minimum mean squared error (LMMSE) estimator is considered. It is observed that time sharing is not needed for the LMMSE estimator, but still the performance can be improved by modifying the signal level. In the final chapter, the optimal channel switching problem is studied for Gaussian channels, and the optimal channel switching strategy is determined in the presence of average power and average cost constraints. It is shown that the optimal channel switching strategy is to switch among at most three channels.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback