Browsing by Subject "Three dimensions"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A 3D dynamic model of a spherical wheeled self-balancing robot(2012) İnal, Ali Nail; Morgül, Ömer; Saranlı, UluçMobility through balancing on spherical wheels has recently received some attention in the robotics literature. Unlike traditional wheeled platforms, the operation of such platforms depends heavily on understanding and working with system dynamics, which have so far been approximated with simple planar models and their decoupled extension to three dimensions. Unfortunately, such models cannot capture inherently spatial aspects of motion such as yaw motion arising from the wheel rolling motion or coupled inertial effects for fast maneuvers. In this paper, we describe a novel, fully-coupled 3D model for such spherical wheeled platforms and show that it not only captures relevant spatial aspects of motion, but also provides a basis for controllers better informed by system dynamics. We focus our evaluations to simulations with this model and use circular paths to reveal advantages of this model in dynamically rich situations. © 2012 IEEE.Item Open Access Algorithms and basis functions in tomographic reconstruction of ionospheric electron density(IEEE, 2005) Yavuz, E.; Arıkan, F.; Arıkan, Orhan; Erol, C. B.Computerized ionospheric tomography (CIT) is a method to investigate ionosphere electron density in two or three dimensions. This method provides a flexible tool for studying ionosphere. Earth based receivers record signals transmitted from the GPS satellites and the computed pseudorange and phase values are used to calculate Total Electron Content (TEC). Computed TEC data and the tomographic reconstruction algorithms are used together to obtain tomographic images of electron density. In this study, a set of basis functions and reconstruction algorithms are used to investigate best fitting two dimensional tomographic images of ionosphere electron density in height and latitude for one satellite and one receiver pair. Results are compared to IRI-95 ionosphere model and both receiver and model errors are neglected.