Browsing by Subject "Three dimensional imaging"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Algebraic reconstraction for 3D magnetic resonance-electrical impedance tomography (MREIT) using one component of magnetic flux density(Institute of Physics and Engineering in Medicine, 2004) Ider, Y. Z.; Onart, S.Magnetic resonance-electrical impedance tomography (MREIT) algorithms fall into two categories: those utilizing internal current density and those utilizing only one component of measured magnetic flux density. The latter group of algorithms have the advantage that the object does not have to be rotated in the magnetic resonance imaging (MRI) system. A new algorithm which uses only one component of measured magnetic flux density is developed. In this method, the imaging problem is formulated as the solution of a non-linear matrix equation which is solved iteratively to reconstruct resistivity. Numerical simulations are performed to test the algorithm both for noise-free and noisy cases. The uniqueness of the solution is monitored by looking at the singular value behavior of the matrix and it is shown that at least two current injection profiles are necessary. The method is also modified to handle region-of-interest reconstructions. In particular it is shown that, if the image of a certain xy-slice is sought for, then it suffices to measure the z-component of magnetic flux density up to a distance above and below that slice. The method is robust and has good convergence behavior for the simulation phantoms used.Item Open Access Design of a novel MRI compatible manipulator for image guided prostate interventions(IEEE, 2005-02) Krieger, A.; Susil, R. C.; Ménard, C.; Coleman, J. A.; Fichtinger, G.; Atalar, Ergin; Whitcomb, L. L.This paper reports a novel remotely actuated manipulator for access to prostate tissue under magnetic resonance imaging guidance (APT-MRI) device, designed for use in a standard high-field MRI scanner. The device provides three-dimensional MRI guided needle placement with millimeter accuracy under physician control. Procedures enabled by this device include MRI guided needle biopsy, fiducial marker placements, and therapy delivery. Its compact size allows for use in both standard cylindrical and open configuration MRI scanners. Preliminary in vivo canine experiments and first clinical trials are reported.Item Open Access Feature issue of digital holography and 3D imaging (DH) introduction(Optical Society of America (OSA), 2014-07) Hayasaki, Y.; Zhou, C.; Popescu, G.; Onural, LeventThe OSA Topical Meeting "Digital Holography and 3D Imaging (DH)," was held in Seattle, Washington, July 13-17, 2014. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. This year Optics Express (OE) and AO jointly decided to have one such feature issue in each journal. The DH meeting will continue in the future, as expected, and the next meeting is scheduled to be held on 24-28 May 2015, in Shanghai Institute of Optics and Fine Mechanics, Shanghai, China. © 2014 Optical Society of AmericaItem Open Access Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment(American Chemical Society, 2016-02) Arslan, E.; Güler, Mustafa O.; Tekinay, A. B.Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.Item Open Access A hybrid classification model for digital pathology using structural and statistical pattern recognition(Institute of Electrical and Electronics Engineers, 2013) Ozdemir, E.; Gunduz-Demir, C.Cancer causes deviations in the distribution of cells, leading to changes in biological structures that they form. Correct localization and characterization of these structures are crucial for accurate cancer diagnosis and grading. In this paper, we introduce an effective hybrid model that employs both structural and statistical pattern recognition techniques to locate and characterize the biological structures in a tissue image for tissue quantification. To this end, this hybrid model defines an attributed graph for a tissue image and a set of query graphs as a reference to the normal biological structure. It then locates key regions that are most similar to a normal biological structure by searching the query graphs over the entire tissue graph. Unlike conventional approaches, this hybrid model quantifies the located key regions with two different types of features extracted using structural and statistical techniques. The first type includes embedding of graph edit distances to the query graphs whereas the second one comprises textural features of the key regions. Working with colon tissue images, our experiments demonstrate that the proposed hybrid model leads to higher classification accuracies, compared against the conventional approaches that use only statistical techniques for tissue quantification. © 2012 IEEE.Item Open Access MaterialVis: material visualization tool using direct volume and surface rendering techniques(Elsevier Inc., 2014) Okuyan, E.; Güdükbay, Uğur; Bulutay, C.; Heinig, Karl-HeinzVisualization of the materials is an indispensable part of their structural analysis. We developed a visualization tool for amorphous as well as crystalline structures, called MaterialVis. Unlike the existing tools, MaterialVis represents material structures as a volume and a surface manifold, in addition to plain atomic coordinates. Both amorphous and crystalline structures exhibit topological features as well as various defects. MaterialVis provides a wide range of functionality to visualize such topological structures and crystal defects interactively. Direct volume rendering techniques are used to visualize the volumetric features of materials, such as crystal defects, which are responsible for the distinct fingerprints of a specific sample. In addition, the tool provides surface visualization to extract hidden topological features within the material. Together with the rich set of parameters and options to control the visualization, MaterialVis allows users to visualize various aspects of materials very efficiently as generated by modern analytical techniques such as the Atom Probe Tomography.Item Open Access Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT(Wiley-Blackwell Publishing, Inc., 2015) Tuna, H.; Arıkan, Orhan; Arikan, F.Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.Item Open Access Specular motion and 3D shape estimation(Association for Research in Vision and Ophthalmology Inc., 2017) Dövencioğlu, D. N.; Ben-Shahar, O.; Barla, P.; Doerschner, K.Dynamic visual information facilitates three-dimensional shape recognition. It is still unclear, however, whether the motion information generated by moving specularities across a surface is congruent to that available from optic flow produced by a matte-textured shape. Whereas the latter is directly linked to the firstorder properties of the shape and its motion relative to the observer, the specular flow, the image flow generated by a specular object, is less sensitive to the object's motion and is tightly related to second-order properties of the shape. We therefore hypothesize that the perceived bumpiness (a perceptual attribute related to curvature magnitude) is more stable to changes in the type of motion in specular objects compared with their matte-textured counterparts. Results from two twointerval forced-choice experiments in which observers judged the perceived bumpiness of perturbed spherelike objects support this idea and provide an additional layer of evidence for the capacity of the visual system to exploit image information for shape inference. © 2017 The Authors.