Browsing by Subject "Third ventriculostomy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Assessment of liliequist membrane by 3D-SPACE technique at 3 T(Springer, 2016) Algın, Oktay; Kılın, M.; Ozmen, E.; Ocakoglu, G.Introduction Liliequist membrane (LM) is the most important anatomic structure for the success of endoscopic third ventriculostomy (ETV). Identification of this membrane is difficult with conventional MRI techniques. The purpose of this retrospective study is to determine the impact of threedimensional sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) sequence with variant flip-angle mode (VFAM) in the assessment of LM at 3-T MRI devices. Methods 3D-SPACE with VFAMimages were obtained in 445 patients. LM visibility and integrity were scored as 0 (good), 1 (moderate), and 2 (poor) on these images for each parts (sellar, diencephalic, and mesencephalic) and overall of the membrane. Results According to the LMoverall integrity scores, 11%(48 cases) of the patients had perforated membrane. According to subsegmental integrity scores, sellar part was completely intact in 63 % of patients, diencephalic segment was completely intact in 60 % of the patients, and mesencephalic segment was completely intact in 95 % of the patients. Visibility scores of the third ventricle inferior wall were significantly higher in the patients with intact LM (p = 0.001). There was not any statistically significant relationship between LM pattern and overall integrity (p = 0.352). LM attachment sites could be detected easier in the patients who had better visibility of third ventricle inferior wall or intact LM (p < 0.001 for both). Conclusion 3D-SPACE technique is a useful alternative for the evaluation of morphology, integrity, individual variations, topographic relationships, and visibility of LM since it has some advantages including lower SAR values, fewer artifacts, and high-resolution images.Item Open Access Evaluation of hydrocephalus patients with 3D-SPACE technique using variant FA mode at 3T(Springer, 2018) Algin, O.The major advantages of three-dimensional sampling perfection with application optimized contrasts using different flip-angle evolution (3D-SPACE) technique are its high resistance to artifacts that occurs as a result of radiofrequency or static field, the ability of providing images with sub-millimeter voxel size which allows obtaining reformatted images in any plane due to isotropic three-dimensional data with lower specific absorption rate values. That is crucial during examination of cerebrospinal-fluid containing complex structures, and the acquisition time, which is approximately 5 min for scanning of entire cranium. Recent data revealed that T2-weighted (T2W) 3D-SPACE with variant flip-angle mode (VFAM) imaging allows fast and accurate evaluation of the hydrocephalus patients during both pre- and post-operative period for monitoring the treatment. For a better assessment of these patients; radiologists and neurosurgeons should be aware of the details and implications regarding to the 3D-SPACE technique, and they should follow the updates in this field. There could be a misconception about the difference between T2W-VFAM and routine heavily T2W 3D-SPACE images. T2W 3D-SPACE with VFAM imaging is only a subtype of 3D-SPACE technique. In this review, we described the details of T2W 3D-SPACE with VFAM imaging and comprehensively reviewed its recent applications.