BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Thin wires"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Computational analysis of complicated metamaterial structures using MLFMA and nested preconditioners
    (IEEE, 2007-11) Ergül, Özgür; Malas, Tahir; Yavuz, Ç; Ünal, Alper; Gürel, Levent
    We consider accurate solution of scattering problems involving complicated metamaterial (MM) structures consisting of thin wires and split-ring resonators. The scattering problems are formulated by the electric-field integral equation (EFIE) discretized with the Rao-Wilton- Glisson basis functions defined on planar triangles. The resulting dense matrix equations are solved iteratively, where the matrix-vector multiplications that are required by the iterative solvers are accelerated with the multilevel fast multipole algorithm (MLFMA). Since EFIE usually produces matrix equations that are ill-conditioned and difficult to solve iteratively, we employ nested preconditioners to achieve rapid convergence of the iterative solutions. To further accelerate the simulations, we parallelize our algorithm and perform the solutions on a cluster of personal computers. This way, we are able to solve problems of MMs involving thousands of unit cells.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm
    (2009) Gürel, Levent; Ergül, Özgür; Ünal, A.; Malas, T.
    We report fast and accurate simulations of metamaterial structures constructed with large numbers of unit cells containing split-ring resonators and thin wires. Scattering problems involving various metamaterial walls are formulated rigorously using the electric-field integral equation, discretized with the Rao-Wilton-Glisson basis functions. Resulting dense matrix equations are solved iteratively, where the matrix-vector multiplications are performed efficiently with the multilevel fast multipole algorithm. For rapid solutions at resonance frequencies, convergence of the iterations is accelerated by using robust preconditioning techniques, such as the sparse-approximate-inverse preconditioner. Without resorting to homogenization approximations and periodicity assumptions, we are able to obtain accurate solutions of realistic metamaterial problems discretized with millions of unknowns.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Transmission properties of composite metamaterials in free space
    (American Institute of Physics, 2002) Bayındır, Mehmet; Aydin, K.; Özbay, Ekmel; Markoš, P.; Soukoulis, C. M.
    We propose and demonstrate a type of composite metamaterial which is constructed by combining thin copper wires and split ring resonators (SRRs) on the same board. The transmission measurements performed in free space exhibit a passband within the stop bands of SRRs and thin wire structures. The experimental results are in good agreement with the predictions of the transfer matrix method simulations. © 2002 American Institute of Physics.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback