Browsing by Subject "Thin film circuits"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Atomic Layer Deposition for Vertically Integrated ZnO Thin Film Transistors: Toward 3D High Packing Density Thin Film Electronics(Wiley-VCH Verlag, 2017) Sisman, Z.; Bolat, S.; Okyay, Ali KemalWe report on the first demonstration of the atomic layer deposition (ALD) based three dimensional (3D) integrated ZnO thin film transistors (TFTs) on rigid substrates. Devices exhibit high on-off ratio (∼106) and high effective mobility (∼11.8 cm2 V−1 s−1). It has also been demonstrated that the steps of fabrication result in readily stable electrical characteristics in TFTs, eliminating the need for post-production steps. These results mark the potential of our fabrication method for the semiconducting metal oxide-based vertical-integrated circuits requiring high packing density and high functionality. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimItem Open Access Demonstration of flexible thin film transistors with GaN channels(American Institute of Physics Inc., 2016) Bolat, S.; Sisman, Z.; Okyay, Ali KemalWe report on the thin film transistors (TFTs) with Gallium Nitride (GaN) channels directly fabricated on flexible substrates. GaN thin films are grown by hollow cathode plasma assisted atomic layer deposition (HCPA-ALD) at 200 °C. TFTs exhibit 103 on-to-off current ratios and are shown to exhibit proper transistor saturation behavior in their output characteristics. Gate bias stress tests reveal that flexible GaN TFTs have extremely stable electrical characteristics. Overall fabrication thermal budget is below 200 °C, the lowest reported for the GaN based transistors so far. © 2016 Author(s)