Browsing by Subject "Thick films"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Germanium for high performance MOSFETs and optical interconnects(2008-10) Saraswat, K. C.; Kim, D.; Krishnamohan, T.; Kuzum, D.; Okyay, Ali Kemal; Pethe, A.; Yu H.-Y.It is believed that to continue the scaling of silicon CMOS innovative device structures and new materials have to be created in order to continue the historic progress in information processing and transmission. Recently germanium has emerged as a viable candidate to augment Si for CMOS and optoelectronic applications. In this work we will first review recent results on growth of thin and thick films of Ge on Si, technology for appropriate cleaning of Ge, surface passivation using high-κ dielectrics, and metal induced crystallization of amorphous Ge and dopant activation. Next we will review application of Ge for high performance MOSFETs. Innovative Si/Ge MOS heterostructures will be described with high on current and low off currents. Finally we will describe optical detectors and modulators for on-chip and off-chip interconnect. Successful integration of Ge on Si should allow continued scaling of silicon CMOS to below 22 nm node. ©The Electrochemical Society.Item Open Access High optical efficiency of ZnO nanoparticles(IEEE, 2007) Tek, Sümeyra; Demir, Hilmi Volkan; Yucel, D.; Celiker G.We develop optically efficient photocatalytic ZnO nanoparticles that we chemically embed and well disperse into host PVAc thin films and experimentally demonstrate the highest optical efficiency of ∼70% in ZnO nanoparticle films, with increasing optical spectral efficiency as the excitation wavelength is swept from 370 nm to 290 nm. ©2007 Optical Society of America.Item Open Access Nanoscale selective area atomic layer deposition of TiO2 using e-beam patterned polymers(Royal Society of Chemistry, 2016) Haider A.; Yilmaz, M.; Deminskyi, P.; Eren, H.; Bıyıklı, NecmiHere, we report nano-patterning of TiO2via area selective atomic layer deposition (AS-ALD) using an e-beam patterned growth inhibition polymer. Poly(methylmethacrylate) (PMMA), polyvinylpyrrolidone (PVP), and octafluorocyclobutane (C4F8) were the polymeric materials studied where PMMA and PVP were deposited using spin coating and C4F8 was grown using inductively coupled plasma (ICP) polymerization. TiO2 was grown at 150 °C using tetrakis(dimethylamido) titanium (TDMAT) and H2O as titanium and oxygen precursors, respectively. Contact angle, scanning electron microscopy (SEM), spectroscopic ellipsometry, and X-ray photoelectron spectroscopy (XPS) measurements were performed to investigate the blocking/inhibition effectiveness of polymer layers for AS-ALD of TiO2. TiO2 was grown with different numbers of growth cycles (maximum = 1200 cycles) on PMMA, PVP, and C4F8 coated substrates, where PMMA revealed complete growth inhibition up to the maximum number of growth cycles. On the other hand, PVP was able to block TiO2 growth up to 300 growth cycles only, whereas C4F8 showed no TiO2-growth blocking capability. Finally, mm-, μm-, and nm-scale patterned selective deposition of TiO2 was demonstrated exploiting a PMMA masking layer that has been patterned using e-beam lithography. SEM, energy-dispersive X-ray spectroscopy (EDX) line scan, EDX elemental mapping, and XPS line scan measurements cumulatively confirmed the self-aligned deposition of TiO2 features. The results presented for the first time demonstrate the feasibility of achieving self-aligned TiO2 deposition via TDMAT/H2O precursor combination and e-beam patterned PMMA blocking layers with a complete inhibition for >50 nm-thick films.