Browsing by Subject "Thermogravimetric analysis"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging(Elsevier, 2017-10) Aytac Z.; Ipek, S.; Durgun, Engin; Tekinay, T.; Uyar, TamerThymol (THY)/γ-Cyclodextrin(γ-CD) inclusion complex (IC) encapsulated electrospun zein nanofibrous webs (zein-THY/γ-CD-IC-NF) were fabricated as a food packaging material. The formation of THY/γ-CD-IC (1:1 and 2:1) was proved by experimental (X-ray diffraction (XRD), thermal gravimetric analysis (TGA), 1H NMR) and computational techniques. THY/γ-CD-IC (2:1) exhibited higher preservation rate and stability than THY/γ-CD-IC (1:1). It is worth mentioning that zein-THY/γ-CD-IC-NF (2:1) preserved much more THY as observed in TGA and stability of THY/γ-CD-IC (2:1) was higher, as shown by a modelling study. Therefore, much more THY was released from zein-THY/γ-CD-IC-NF (2:1) than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). Similarly, antibacterial activity of zein-THY/γ-CD-IC-NF (2:1) was higher than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). It was demonstrated that zein-THY/γ-CD-IC-NF (2:1) was most effective in inhibiting the growth of bacteria on meat samples. These webs show potential application as an antibacterial food packaging material.Item Open Access Conducting polymer composites of polypyrrole and polyindene(Elsevier, 1996) Bozkurt, A.; Akbulut, U.; Toppare, L.Polypyrrole-polyindene composites were prepared via electrochemical methods. Two different approaches were utilized. In the first, the electro-initiated polymerization of indene on a platinum electrode was achieved at 2.0 V versus Ag/Ag+ in acetonitrile. Then the polyindene-coated electrode was used for the electrochemical polymerization of pyrrole at 1.0 V versus Ag/Ag+. In the second case, electrochemical coating of platinum electrode with polypyrrole at 1.0 V versus Ag/Ag+ was carried out and indene was polymerized on the conducting polymer at 2.0 V versus Ag/Ag+ in acetonitrile medium. The characterizations of these composites were done by FT-IR, scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). Electrical conductivities were evaluated by two-probe and four-probe methods.Item Open Access Electrochemically obtained insulating and conducting polymers and composites of acrylonitrile(1998) Yilmaz, B.Y.; Akbulut, U.; Toppare L.Electrochemically obtained polyacrylonitrile and a commercial polyacrylonitrile were heat treated to improve their conductivities. The parameters chosen for heat treatment conditions were the temperature, treatment medium (vacuum or air) and, doping agent. The conductivity of all heat treated polymers was measured. The characterization of the heat treated polymers was made by IR analysis. The composite films of polyacrylonitrile with polypyyrole and polythiophene were electrochemically prepared at different compositions. The change in the conductivity of composites was analyzed as a function of the percent composition of the insulating component. IR, DSC, TGA and SEM analyses were used to characterize the polymer composites.Item Open Access The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning(2009) Uyar, Tamer; Havelund, R.; Hacaloglu J.; Zhou X.; Besenbacher F.; Kingshott P.Polystyrene (PS) nanofibers containing the inclusion complex forming beta-cyclodextrin (β-CD) were successfully produced by electrospinning aimed at developing functional fibrous nanowebs. By optimization of the electrospinning parameters, which included varying the relative concentration of PS and β-CD in the solutions, bead-free fibers were produced. Homogeneous solutions of β-CD and PS in dimethylformamide (DMF) were used with concentrations of PS varying from 10% to 25% (w/v, with respect to DMF), and β-CD concentrations of 1% to 50% (w/w, with respect to PS). The presence of β-CD facilitated the production of bead-free PS fibers even from lower polymer concentrations as a result of the higher conductivity of the PS/CD solutions. The morphology and the production of bead-free PS/CD fibers were highly dependent on the β-CD contents. Transmission electron microscope (TEM) and atomic force microscope (AFM) images showed that incorporation of β-CD yielded PS fibers with rougher surfaces. Thermogravimetric analysis (TGA) and direct insertion probe pyrolysis mass spectroscopy (DP-MS) results confirmed the presence of β-CD in the PS fibers. X-ray diffraction (XRD) spectra of the fibers indicated that the β-CD molecules are distributed within the PS matrix without any phase separated crystalline aggregates up to 40% (w/w) β-CD loading. Furthermore, chemical analyses by Fourier transform infrared (FTIR) spectroscopy studies confirm that β-CD molecules are located within the PS fiber matrix. Finally, preliminary investigations using x-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-static-SIMS) show the presence of the cyclodextrin molecules in the outer molecular layers of the fiber surfaces. The XPS and ToF-SIMS findings indicate that cyclodextrin functionalized PS webs would have the potential to be used as molecular filters and/or nanofilters for the purposes of filtration/purification/separation owing to surface associated β-CD molecules which have inclusion complexation capability. © 2009 IOP Publishing Ltd.Item Open Access Nanocomposite glass coatings containing hexagonal boron nitride nanoparticles(Pergamon Press, 2016) Çamurlu, H. E.; Akarsu, E.; Arslan, O.; Mathur, S.Glass coatings composed of SiO2-K2O-Li2O, containing non-modified and fluorosilane modified hexagonal boron nitride (hBN) nanoparticles, were prepared on stainless steel plates through sol-gel spin-coating method. Coatings were examined by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), atomic force microscopy (AFM) and thermo-gravimetric analysis (TGA). 1.3-2.5 μm thick uniform coatings were obtained after curing at 500 °C for 1 h. The coatings adhered well to the steel substrates. It was determined by salt spray tests that the coatings enhance corrosion resistance. The aim of hydrophobic fluorosilane modification of hBN nanoparticles was to enrich hBN quantity on the top surface of the coatings. Coatings containing fluorosilane modified hBN nanoparticles presented slightly lower friction coefficient values than the other coatings.Item Open Access Polyhedral oligomeric silsesquioxane-based hybrid networks obtained via thiol-epoxy click chemistry(Springer, 2017) Bekin Acar, S.; Ozcelik, M.; Uyar, Tamer; Tasdelen, M. A.A series of hybrid networks based on polyhedral oligomeric silsesquioxane (POSS) were prepared by thiol-epoxy click reaction using commercially available octakis-glycidyl-POSS (G-POSS), trimethylolpropane triglycidyl ether, and trimethylolpropane tris(3-mercaptopropionate) as monomers. The click reaction was simply catalyzed by lithium hydroxide which proceeded readily at ambient conditions in very good yields. The incorporation of G-POSS into the network was clearly determined by transmission electron microscopy, FTIR, and 1H-NMR spectroscopy techniques performed with a model study using 1-butane thiol and G-POSS molecules. The homogeneous distribution of G-POSS up to 5 wt% in the hybrid network was apparently confirmed by morphological investigations. By increasing G-POSS content higher than 5 wt%, the heterogeneous dispersion of G-POSS was determined from the tensile strength measurements. The significant decrease in tensile strength was possible due to the agglomeration of G-POSS. On the other hand, thermal properties of hybrid networks were compared together by thermogravimetric analyses, where all samples exhibited one-step degradation in the range of 220–500 °C. The thermal decomposition of hybrid network led to complete degradation of the organic part and favored the formation of stable carbonaceous and inorganic residues as char. Thus, the char yields of hybrid networks were increased to 6.2, 7.8, 10.1, 12.7, and 15.1% by G-POSS loadings from 0 to 15 wt%. This improvement was also a proof of the incorporation of G-POSS into the hybrid networks that resulted in high heat-resistant POSS-based hybrid networks compared to a sample without G-POSS.Item Open Access Synthesis of polybenzoxazine/clay nanocomposites by in situ thermal ring-opening polymerization using intercalated monomer(2011) Demir, K.D.; Tasdelen, M.A.; Uyar, T.; Kawaguchi, A.W.; Sudo, A.; Endo, T.; Yagci, Y.A new class of polybenzoxazine/montmorillonite (PBz/MMT) nanocomposites has been prepared by the in situ polymerization of the typical fluid benzoxazine monomer, 3-pentyl-5-ol-3,4-dihydro-1,3-benzoxazine, with intercalated benzoxazine MMT clay. A pyridine-substituted benzoxazine was first synthesized and quaternized by 11-bromo-1-undecanol and then used for ion exchange reaction with sodium ions in MMT to obtain intercalated benzoxazine clay. Finally, this organomodified clay was dispersed in the fluid benzoxazine monomers at different loading degrees to conduct the in situ thermal ring-opening polymerization. Polymerization through the interlayer galleries of the clay led to the PBz/MMT nanocomposite formation. The morphologies of the nanocomposites were investigated by both X-ray diffraction and transmission electron microscopic techniques, which suggested the partially exfoliated/intercalated structures in the PBz matrix. Results of thermogravimetric analysis confirmed that the thermal stability and char yield of PBz nanocomposites increased with the increase of clay content. © 2011 Wiley Periodicals, Inc.