Browsing by Subject "Thermography"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Absolute temperature monitoring using RF radiometry in the MRI scanner(Institute of Electrical and Electronics Engineers, 2006) El-Sharkawy, A.-M. M.; Sotiriadis, P. P.; Bottomley, P. A.; Atalar, ErginTemperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28°C-40 °C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies.Item Open Access Exceptional adaptable MWIR thermal emission for ordinary objects covered with thin VO2 film(Elsevier Ltd, 2021-01-25) Durna, Yılmaz; Kocer, Hasan; Aydın, Koray; Cakir, Mehmet Cihan; Soydan, Mahmut Can; Odabasi, Oguz; Işık, Halil; Ozbay, EkmelMonotonous thermal radiation emitted from an ordinary object can be brought into a dynamic and versatile form that can be shaped according to the application area with the ingenious design of the surface coatings. Building the coatings with phase change materials provides exceptional and surprising properties in terms of tunability, adaptability and multifunctionality. In this paper, we investigate the thermal radiation properties in the MWIR band through comprehensive thermographic measurements and theoretical methods while a thin (similar to 90 nm thick) vanadium dioxide (VO2) layer on the sapphire substrate (VO2 thin film) is placed on different ordinary objects under heating/cooling conditions. It is indicated that the emission of the metal object (low emittance) can be boosted and the emission of the blackbody-like object (high emittance) can be suppressed at the relevant temperatures. The thermal emission of the objects covered with thin VO2 film at high temperatures (>75 degrees C) is determined by only the VO2 thin film, since the VO2 layer is completely metallized and the MWIR radiation of the underlying object is masked. When the actual temperature of the object behaving like a blackbody rises up to 95 degrees C, the temperature detected in the MWIR thermal camera is reduced by more than 20% to approx. 75 degrees C due to the VO2 thin film on this object, providing thermal camouflage. It is experimentally and theoretically revealed that the underlying physical mechanism on these strange results is associated with the drastic change in the infrared optical parameters of the VO2 as a result of the applied temperature. (C) 2020 Elsevier Ltd. All rights reserved.Item Open Access Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system(John Wiley & Sons, 2005-06) Qiu, B.; El-Sharkawy, A.-M.; Paliwal, V.; Karmarkar, P.; Gao, F.; Atalar, Ergin; Yang, X.Previous studies have confirmed the possibility of using an intravascular MR imaging guidewire (MRIG) as a heating source to enhance vascular gene transfection/expression. This motivated us to develop a new intravascular system that can perform MR imaging, radiofrequncy (RF) heating, and MR temperature monitoring simultaneously in an MR scanner. To validate this concept, a series of mathematical simulations of RF power loss along a 0.032-inch MRIG and RF energy spatial distribution were performed to determine the optimum RF heating frequency. Then, an RF generator/amplifier and a filter box were built. The possibility for simultaneous RF heating and MR thermal mapping of the system was confirmed in vitro using a phantom, and the obtained thermal mapping profile was compared with the simulated RF power distribution. Subsequently, the feasibility of simultaneous RF heating and temperature monitoring was successfully validated in vivo in the aorta of living rabbits. This MR imaging/RF heating system offers a potential tool for intravascular MR-mediated, RF-enhanced vascular gene therapy.Item Open Access SSFP-based MR thermometry(John Wiley & Sons, 2004) Paliwal, V.; El-Sharkawy, A.-M.; Du, X.; Yang, X.; Atalar, ErginOf the various techniques employed to quantify temperature changes by MR, proton resonance frequency (PRF) shift-based phase-difference imaging (PDI) is the most accurate and widely used. However, PDI is associated with various artifacts. Motivated by these limitations, we developed a new method to monitor temperature changes by MRI using the balanced steady-state free precession (balanced-SSFP) pulse sequence. Magnitude images obtained with the SSFP pulse sequence were used to find the PRF shift, which is proportional to temperature change. Spatiotemporal temperature maps were successfully reconstructed with this technique in gel phantom experiments and a rabbit model. The results show that the balanced-SSFP-based method is a promising new technique for monitoring temperature.