Browsing by Subject "Thermodynamics"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Item Open Access Black hole solutions and Euler equation in Rastall and generalized Rastall theories of gravity(World Scientific Publishing, 2019) Moradpour, H.; Heydarzade, Yaghoub; Corda, C.; Ziaie, A. H.; Ghaffari, S.Focusing on the special case of generalized Rastall theory, as a subclass of the non-minimal curvature-matter coupling theories in which the field equations are mathematically similar to the Einstein field equations in the presence of cosmological constant, we find two classes of black hole (BH) solutions including (i) conformally flat solutions and (ii) non-singular BHs. Accepting the mass function definition and by using the entropy contents of the solutions along with thermodynamic definitions of temperature and pressure, we study the validity of Euler equation on the corresponding horizons. Our results show that the thermodynamic pressure, meeting the Euler equation, is not always equal to the pressure components appeared in the gravitational field equations and satisfies the first law of thermodynamics, a result which in fact depends on the presumed energy definition. The requirements of having solutions with equal thermodynamic and Hawking temperatures are also studied. Additionally, we study the conformally flat BHs in the Rastall framework. The consequences of employing generalized Misner–Sharp mass in studying the validity of the Euler equation are also addressed.Item Open Access Bose-Einstein condensation of noninteracting charged Bose gas in the presence of external potentials(Elsevier Science Publishers B.V., 2001) Bayındır, Mehmet; Tanatar, BilalWe investigate thermodynamic properties of noninteracting charged bosons in the presence of externally applied electric and magnetic fields. Using the semiclassical density of states, we obtain the condensate fraction, chemical potential, total energy, and specific heat of a system of finite number of charged Bose particles. We conclude that Bose-Einstein condensation of the charged Bose gas occurs in the crossed electric and magnetic fields.Item Open Access Characterization of thermally poled germanosilicate thin films(Optical Society of American (OSA), 2004) Ozean, A.; Digonnet, M.J.F.; Kino G.S.; Ay F.; Aydınlı, AtillaWe report measurements of the nonlinearity profile of thermally poled low-loss germanosilicate films deposited on fused-silica substrates by PECVD, of interest as potential electro-optic devices. The profiles of films grown and poled under various conditions all exhibit a sharp peak ∼0.5 μm beneath the anode surface, followed by a weaker pedestal of approximately constant amplitude down to a depth of 13-16 μm, without the sign reversal typical of poled undoped fused silica. These features suggest that during poling, the films significantly slow down the injection of positive ions into the structure. After local optimization, we demonstrate a record peak nonlinear coefficient of ∼1.6 pm/V, approximately twice as strong as the highest reliable value reported in thermally poled fused silica glass, a significant improvement that was qualitatively expected from the presence of Ge. ©2004 Optical Society of America.Item Open Access Charged bosons in a quasi-one-dimensional system(American Physical Society, 2000) Tanatar, Bilal; Davoudi, B.; Kohandel, M.The ground-state properties of a system of charged bosons in a quasi-one-dimensional model with a neutralizing background are investigated within the hypernetted-chain approximation. Strong correlation effects drive the system from a homogeneous fluid phase toward a more ordered structure akin to Wigner crystallization in higher-dimensional charged quantum systems. The ordered phase of charged bosons is signaled by the development of a peak in the static structure factor, which is analyzed as a function of the density and the lateral width of the one-dimensional structure. We also calculate the pair-distribution function, the ground-state energy, and the local-field correction, and compare our results with other theoretical approaches.Item Open Access Density profile of a Bose-Einstein condensate inside a pancake-shaped trap: Observational consequences of the dimensional cross-over in the scattering properties(Elsevier Science B.V., 2002) Tanatar, Bilal; Minguzzi, A.; Vignolo, P.; Tosi, M. P.It is theoretically well known that two-dimensionality of the scattering events in a Bose-Einstein condensate introduces a logarithmic dependence on density in the coupling constant entering a mean-field theory of the equilibrium density profile, which becomes dominant as the s-wave scattering length gets larger than the condensate thickness. We trace the regions of experimentally accessible system parameters for which the cross-over between different dimensionality behaviors in the scattering properties may become observable through in situ imaging of the condensed cloud with varying trap anisotropy and scattering length.Item Open Access Dynamic correlation effects on the plasmon dispersion in a two-dimensional electron gas(The American Physical Society, 2003) Yurtsever, A.; Moldoveanu, V.; Tanatar, BilalThe charge-density oscillations (plasmons) of a low-density two-dimensional uniform electron gas are studied within the framework of finite temperature and frequency dependent (dynamic) version of Singwi, Tosi, Land, and Sjölander theory and compared with the recent experimental results. The use of the Hartree-Fock approximation for the static structure factor leads to a finite temperature dynamical counterpart of the static Hubbard approximation. We observe important differences between dynamic and static local-field factors as well as between the corresponding plasmon dispersion laws. Our calculated plasmon energies that include dynamic correlations are in very-good agreement with the recent experimental results.Item Open Access Effect of instructional design based on cognitive load theory on students’ performances and the indicators of element interactivity(Ekip Buro Makineleri A., 14-08-2023) Kala, N.; Ayas, AlipaşaThermodynamics is one of the most complex topics in chemistry. Cognitive Load Theory claims that the complexity of a subject is mainly due to element interactivity - how many elements an individual must organise simultaneously in her/his working memory to master a topic. The simultaneous processing of various chemistry and mathematics concepts to learn thermodynamics puts a strain on the working memory capacity of the learner. Accordingly, what kind of change occurs in a learner’s cognitive processes according to the level of element interactivity is an issue that needs to be investigated. The aim of this study is to reveal the basic indicators of element interactivity and investigate the effects of instructional design on understanding subjects with different element interactivity levels. With this objective in mind, educational software comprising eight distinct sessions for instructional design was developed in accordance with the Cognitive Load Theory. The sample consisted of 37 freshmen who were taking classes in the Chemistry Department of a public university in Turkey. The instructional design was implemented with the experimental group while the control group followed the lecturer's instructional design. The results indicate that, in terms of the cognitive load in the learning process, the study time and the learning at the retention and transfer level are among the basic indicators of the element interactivity. This study also determined that the instructional design that is developed according to Cognitive Load Theory can provide effective learning at the retention and transfer levels in subjects with high element interactivity. © (2023). All Rights Reserved.Item Open Access Investigation of binding properties of dicationic styrylimidazo[1,2-a]pyridinium dyes to human serum albumin by spectroscopic techniques(John Wiley and Sons Ltd, 2017) Özdemir, A.; Gökoğlu, E.; Yılmaz, Esra; Yalçın, E.; Gökoğlu, E.; Seferoğlu, Z.; Tekinay, T.The binding interaction between two dicationic styrylimidazo[1,2-a]pyridinium dyes and human serum albumin (HSA) was investigated at physiological conditions using fluorescence, UV–vis absorption, and circular dichroism (CD) spectroscopies. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by these dyes was static. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) indicated that hydrogen bonding and van der Waals forces played a major role in the formation of the dye–HSA complex. Binding distances (r) between dyes and HSA were calculated according to Förster's non-radiative energy transfer theory. Studies of conformational changes of HSA using CD measurements indicate that the α-helical content of the protein decreased upon binding of the dyes.Item Open Access Non-Boltzmann stationary distributions and nonequilibrium relations in active baths(American Physical Society, 2016-12) Argun, A.; Moradi A.-R.; Pinçe, E.; Bagci, G. B.; Imparato, A.; Volpe, G.Most natural and engineered processes, such as biomolecular reactions, protein folding, and population dynamics, occur far from equilibrium and therefore cannot be treated within the framework of classical equilibrium thermodynamics. Here we experimentally study how some fundamental thermodynamic quantities and relations are affected by the presence of the nonequilibrium fluctuations associated with an active bath. We show in particular that, as the confinement of the particle increases, the stationary probability distribution of a Brownian particle confined within a harmonic potential becomes non-Boltzmann, featuring a transition from a Gaussian distribution to a heavy-tailed distribution. Because of this, nonequilibrium relations (e.g., the Jarzynski equality and Crooks fluctuation theorem) cannot be applied. We show that these relations can be restored by using the effective potential associated with the stationary probability distribution. We corroborate our experimental findings with theoretical arguments.Item Restricted Item Open Access Nonthermal Quantum Channels as a Thermodynamical Resource(American Physical Society, 2015) Navascués, M.; García-Pintos L.P.Quantum thermodynamics can be understood as a resource theory, whereby thermal states are free and the only allowed operations are unitary transformations commuting with the total Hamiltonian of the system. Previous literature on the subject has just focused on transformations between different state resources, overlooking the fact that quantum operations which do not commute with the total energy also constitute a potentially valuable resource. In this Letter, given a number of nonthermal quantum channels, we study the problem of how to integrate them in a thermal engine so as to distill a maximum amount of work. We find that, in the limit of asymptotically many uses of each channel, the distillable work is an additive function of the considered channels, computable for both finite dimensional quantum operations and bosonic channels. We apply our results to bound the amount of distillable work due to the natural nonthermal processes postulated in the Ghirardi-Rimini-Weber (GRW) collapse model. We find that, although GRW theory predicts the possibility of extracting work from the vacuum at no cost, the power which a collapse engine could, in principle, generate is extremely low. © 2015 American Physical Society. © 2015 American Physical Society.Item Open Access Orientational transition and complexation of DNA with anionic membranes: weak and intermediate electrostatic coupling(American Physical Society, 2019) Büyükdağlı, Şahin; Podgornik, R.We characterize the role of charge correlations in the adsorption of a short, rodlike anionic polyelectrolyte onto a similarly charged membrane. Our theory reveals two different mechanisms driving the like-charge polyelectrolyte-membrane complexation: In weakly charged membranes, repulsive polyelectrolyte-membrane interactions lead to the interfacial depletion and a parallel orientation of the polyelectrolyte with respect to the membrane; while in the intermediate membrane charge regime, the interfacial counterion excess gives rise to an attractive “salt-induced” image force. This furthermore results in an orientational transition from a parallel to a perpendicular configuration and a subsequent short-ranged like-charge adsorption of the polyelectrolyte to the substrate. A further increase of the membrane charge engenders a charge inversion, originating from surface-induced ionic correlations, that act as a separate mechanism capable of triggering the like-charge polyelectrolyte-membrane complexation over an extended distance interval from the membrane surface. The emerging picture of this complexation phenomenon identifies the interfacial “salt-induced” image forces as a powerful control mechanism in polyelectrolyte-membrane complexation.Item Open Access Radiochemical study of Co2+ sorption on chlorite and kaolinite(Akademiai Kiado Rt., 1999) Shahwan, T.; Erten, H. N.In this work, the sorption behavior of Co(II) ions on natural chlorite and kaolinite as a function of time, concentration and temperature was studied. 60Co radiotracer method and the batch technique were used. The kinetic results indicated that about one day of contact time was enough to achieve equilibrium. The sorption process was described by Freundlich type isotherms. Sorption of Co(II) ions on both clays was found to be endothermic with ΔH(o) (kJ/mol) and ΔS(o) (kJ/mol·K) being 33 and 0.14 for kaolinite and 17 and 0.102 for chlorite, respectively. The magnitudes of the corresponding ΔG(o) values suggest that sorption occur mainly via an ion exchange mechanism on both clays.Item Open Access A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron(2007) Çelebi O.; Üzüm, C.; Shahwan, T.; Erten H.N.Recently, iron nanoparticles are increasingly being tested as adsorbents for various types of organic and inorganic pollutants. In this study, nanoparticles of zero-valent iron (NZVI) synthesized under atmospheric conditions were employed for the removal of Ba2+ ions in a concentration range 10-3 to 10-6 M. Throughout the study, 133Ba was used as a tracer to study the effects of time, concentration, and temperature. The obtained data was analyzed using various kinetic models and adsorption isotherms. Pseudo-second-order kinetics and Dubinin-Radushkevich isotherm model provided the best correlation with the obtained data. Observed thermodynamic parameters showed that the process is exothermic and hence enthalpy-driven. © 2007 Elsevier B.V. All rights reserved.Item Open Access Retinal proteins as model systems for membrane protein folding(Elsevier BV, 2014) Tastan, O.; Dutta, A.; Booth, P.; Klein-Seetharaman, J.Experimental folding studies of membrane proteins are more challenging than water-soluble proteins because of the higher hydrophobicity content of membrane embedded sequences and the need to provide a hydrophobic milieu for the transmembrane regions. The first challenge is their denaturation: due to the thermodynamic instability of polar groups in the membrane, secondary structures in membrane proteins are more difficult to disrupt than in soluble proteins. The second challenge is to refold from the denatured states. Successful refolding of membrane proteins has almost always been from very subtly denatured states. Therefore, it can be useful to analyze membrane protein folding using computational methods, and we will provide results obtained with simulated unfolding of membrane protein structures using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method. Computational methods have the advantage that they allow a direct comparison between diverse membrane proteins. We will review here both, experimental and FIRST studies of the retinal binding proteins bacteriorhodopsin and mammalian rhodopsin, and discuss the extension of the findings to deriving hypotheses on the mechanisms of folding of membrane proteins in general. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.Item Open Access Temperature dependence of the energy of a vortex in a two-dimensional Bose gas(Elsevier, 2004) Rajagopal, K. K.; Tanatar, Bilal; Vignolo, P.; Tosi, M. P.We evaluate the thermodynamic critical angular velocity Ωc(T) for creation of a vortex of lowest quantized angular momentum in a strictly two-dimensional Bose gas at temperature T, using a mean-field two-fluid model for the condensate and the thermal cloud. Our results show that (i) a Thomas-Fermi description of the condensate badly fails in predicting the particle density profiles and the energy of the vortex as functions of T; and (ii) an extrapolation of a simple Thomas-Fermi formula for Ωc(0) is nevertheless approximately useful up to T≃0.5Tc.Item Open Access Thermodynamic parameters of Cs+ sorption on natural clays(Akademiai Kiado Rt., 2002) Shahwan, T.; Erten, H. N.The sorption behavior of Cs+ on kaolinite, chlorite-illite, and bentonite clays as a function of time, cation concentration, and temperature was studied using the radiotracer method. Sorption data were well represented by Freundlich and Dubinin-Radushkevich type isotherms. Bentonite was found to have the highest sorption capacity and the highest exchange affinity to Cs+. In all three cases Cs+ sorption was found to be exothermic with ΔH° (kJ/mol) -13, -8, -19 and ΔS° (J/mol·K) -15, 31, and -3 for kaolinite, chlorite-illite, and bentonite, respectively. Negative ΔG° values were obtained in all cases, indicating the spontaneity of sorption. The magnitudes of ΔG° suggest that ion exchange is the primary sorption mechanism.Item Open Access Trapped interacting Bose gas in nonextensive statistical mechanics(The American Physical Society, 2002) Tanatar, BilalWe study the Bose-Einstein condensation (BEC) phenomenon in an interacting trapped Bose gas using the semiclassical two-fluid model and nonextensive statistical mechanics. The effects of nonextensivity characterized by a parameter are explored by calculating the temperature dependent thermodynamic properties, fraction of condensed particles, and density distributions of condensed and thermal components of the system. It is found that nonextensivity in the underlying statistical mechanics may have large effects on the BEC transition temperature.