Browsing by Subject "Texture"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Histopathological image classification using salient point patterns(2011) Çığır, CelalOver the last decade, computer aided diagnosis (CAD) systems have gained great importance to help pathologists improve the interpretation of histopathological tissue images for cancer detection. These systems offer valuable opportunities to reduce and eliminate the inter- and intra-observer variations in diagnosis, which is very common in the current practice of histopathological examination. Many studies have been dedicated to develop such systems for cancer diagnosis and grading, especially based on textural and structural tissue image analysis. Although the recent textural and structural approaches yield promising results for different types of tissues, they are still unable to make use of the potential biological information carried by different tissue components. However, these tissue components help better represent a tissue, and hence, they help better quantify the tissue changes caused by cancer. This thesis introduces a new textural approach, called Salient Point Patterns (SPP), for the utilization of tissue components in order to represent colon biopsy images. This textural approach first defines a set of salient points that correspond to nuclear, stromal, and luminal components of a colon tissue. Then, it extracts some features around these salient points to quantify the images. Finally, it classifies the tissue samples by using the extracted features. Working with 3236 colon biopsy samples that are taken from 258 different patients, our experiments demonstrate that Salient Point Patterns approach improves the classification accuracy, compared to its counterparts, which do not make use of tissue components in defining their texture descriptors. These experiments also show that different set of features can be used within the SPP approach for better representation of a tissue image.Item Open Access Influence of color-texture associations on preference(2017-07) Fasllija, ElaThis study analyzes the possible existence of a relationship between color and texture in terms of preference. One hundred design-trained and 96 non-design trained respondents underwent an experiment carried out in a virtual and abstract environment. 12 color-texture mapped squares, (4 colors x 3 textures) were placed in a neutral grey colored background and shown to the respondents. They responded the question about their most preferred color-association. As a second part of the experiment, they answered also about their most preferred texture strength of the previously selected square. Results of the study deny the existence of a dependency between color and texture. Moreover, blue was the overall most preferred color in any context. Fine textures were preferred more compared to coarse ones. In addition, small changes were observed in terms of preference between the design trained and non-design trained respondents. However, gender was not a prominent factor affecting preferences in this study.Item Open Access Local object patterns for representation and classification of colon tissue images(Institute of Electrical and Electronics Engineers, 2014-07) Olgun, G.; Sokmensuer, C.; Gunduz Demir, C.This paper presents a new approach for the effective representation and classification of images of histopathological colon tissues stained with hematoxylin and eosin. In this approach, we propose to decompose a tissue image into its histological components and introduce a set of new texture descriptors, which we call local object patterns, on these components to model their composition within a tissue. We define these descriptors using the idea of local binary patterns, which quantify a pixel by constructing a binary string based on relative intensities of its neighbors. However, as opposed to pixel-level local binary patterns, we define our local object pattern descriptors at the component level to quantify a component. To this end, we specify neighborhoods with different locality ranges and encode spatial arrangements of the components within the specified local neighborhoods by generating strings. We then extract our texture descriptors from these strings to characterize histological components and construct the bag-of-words representation of an image from the characterized components. Working on microscopic images of colon tissues, our experiments reveal that the use of these component-level texture descriptors results in higher classification accuracies than the previous textural approaches. © 2013 IEEE.Item Open Access Local object patterns for tissue image representation and cancer classification(2013) Olgun, GüldenHistopathological examination of a tissue is the routine practice for diagnosis and grading of cancer. However, this examination is subjective since it requires visual interpretation of a pathologist, which mainly depends on his/her experience and expertise. In order to minimize the subjectivity level, it has been proposed to use automated cancer diagnosis and grading systems that represent a tissue image with quantitative features and use these features for classifying and grading the tissue. In this thesis, we present a new approach for effective representation and classification of histopathological tissue images. In this approach, we propose to decompose a tissue image into its histological components and introduce a set of new texture descriptors, which we call local object patterns, on these components to model their composition within a tissue. We define these descriptors using the idea of local binary patterns. However, we define our local object pattern descriptors at the component-level to quantify a component, as opposed to pixel-level local binary patterns, which quantify a pixel by constructing a binary string based on relative intensities of its neighbors. To this end, we specify neighborhoods with different locality ranges and encode spatial arrangements of the components within the specified local neighborhoods by generating strings. We then extract our texture descriptors from these strings to characterize histological components and construct the bag-of-words representation of an image from the characterized components. In this thesis, we use two approaches for the selection of the components: The first approach uses all components to construct a bag-ofwords representation whereas the second one uses graph walking to select multiple subsets of the components and constructs multiple bag-of-words representations from these subsets. Working with microscopic images of histopathological colon tissues, our experiments show that the proposed component-level texture descriptors lead to higher classification accuracies than the previous textural approaches.Item Open Access Multilevel segmentation of histopathological images using cooccurance of tissue objects(Institute of Electrical and Electronics Engineers, 2012-06) Simsek, A. C.; Tosun, A. B.; Aykanat, Cevdet; Sokmensuer, C.; Gunduz Demir, C.This paper presents a new approach for unsupervised segmentation of histopathological tissue images. This approach has two main contributions. First, it introduces a new set of high-level texture features to represent the prior knowledge of spatial organization of the tissue components. These texture features are defined on the tissue components, which are approximately represented by tissue objects, and quantify the frequency of two component types being cooccurred in a particular spatial relationship. As they are defined on components, rather than on image pixels, these object cooccurrence features are expected to be less vulnerable to noise and variations that are typically observed at the pixel level of tissue images. Second, it proposes to obtain multiple segmentations by multilevel partitioning of a graph constructed on the tissue objects and combine them by an ensemble function. This multilevel graph partitioning algorithm introduces randomization in graph construction and refinements in its multilevel scheme to increase diversity of individual segmentations, and thus, improve the fi- nal result. The experiments on 200 colon tissue images reveal that the proposed approach—the object cooccurrence features together with the multilevel segmentation algorithm—is effective to obtain high-quality results. The experiments also show that it improves the segmentation results compared to the previous approaches.Item Open Access On a parameter estimation method for Gibbs-Markov random fields(IEEE, 1994) Gürelli, M. I.; Onural, L.This correspondence is about a Gibbs-Markov random field (GMRF) parameter estimation technique proposed by Derin and Elliott. We will refer to this technique as the histogramming (H) method. First, the relation of the H method to the (conditional) maximum likelihood (ML) method is considered. Second, a bias-reduction based modification of the H method is proposed to improve its performance, especially in the case of small amounts of image data.Item Open Access Scene representation technologies for 3DTV-a survey(Institute of Electrical and Electronics Engineers, 2007-11) Alatan, A. A.; Yemez, Y.; Güdükbay, Uğur; Zabulis, X.; Müller, K.; Erdem, C.; Weigel, C.; Smolic, A.3-D scene representation is utilized during scene extraction, modeling, transmission and display stages of a 3DTV framework. To this end, different representation technologies are proposed to fulfill the requirements of 3DTV paradigm. Dense point-based methods are appropriate for free-view 3DTV applications, since they can generate novel views easily. As surface representations, polygonal meshes are quite popular due to their generality and current hardware support. Unfortunately, there is no inherent smoothness in their description and the resulting renderings may contain unrealistic artifacts. NURBS surfaces have embedded smoothness and efficient tools for editing and animation, but they are more suitable for synthetic content. Smooth subdivision surfaces, which offer a good compromise between polygonal meshes and NURBS surfaces, require sophisticated geometry modeling tools and are usually difficult to obtain. One recent trend in surface representation is point-based modeling which can meet most of the requirements of 3DTV, however the relevant state-of-the-art is not yet mature enough. On the other hand, volumetric representations encapsulate neighborhood information that is useful for the reconstruction of surfaces with their parallel implementations for multiview stereo algorithms. Apart from the representation of 3-D structure by different primitives, texturing of scenes is also essential for a realistic scene rendering. Image-based rendering techniques directly render novel views of a scene from the acquired images, since they do not require any explicit geometry or texture representation. 3-D human face and body modeling facilitate the realistic animation and rendering of human figures that is quite crucial for 3DTV that might demand real-time animation of human bodies. Physically based modeling and animation techniques produce impressive results, thus have potential for use in a 3DTV framework for modeling and animating dynamic scenes. As a concluding remark, it can be argued that 3-D scene and texture representation techniques are mature enough to serve and fulfill the requirements of 3-D extraction, transmission and display sides in a 3DTV scenario. © 2007 IEEE.