Browsing by Subject "Textual information"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Bağlamsal çıkarımla nesne sezimi(IEEE, 2009-04) Kalaycılar, Fırat; Aksoy, SelimBu bildiride, sezim başarımını arttırmada tek tek sezilmiş nesneler arasındaki bağlamsal ilişkilerden yararlanan bir nesne sezim sistemi tanıtılmaktadır. Bu çalışmadaki ilk katkı, iki boyutlu görüntü uzayında yapılan ölçümlerden olasılıksal çıkarım yaparak nesneler arası gerçek dünya ilişkilerinin (çevresinde, yakınında, üzerinde vb.) modellenmesidir. Diğer bir katkı ise, bireysel nesne etiketlerine ve nesne ikilileri arasındaki ilişkilere bağlı olan sahne olasılık fonksiyonunun enbüyütülerek, nesnelerin en son etiketlerinin atanmasıdır. En tutarlı sahne duzenleşimini bulmak için bu enbüyütme problemi, doğrusal eniyileme kullanılarak çözülmüştür. Ofis görüntüleri içeren iki farklı veri kümesinde yapılan deneylerde, gerçek dünya uzamsal ilişkileri bağlamsal bilgi olarak kullanıldığında genel sezim başarımının arttığı gözlemlenmiştir. In this paper, an object detection system that utilizes contextual relationships between individually detected objects to improve the overall detection performance is introduced. The first contribution in this work is the modelling of real world object relationships (beside, on, near etc.) that can be probabilistically inferred using measurements in the 2D image space. The other contribution is the assignment offinol lobe/s to the detected objects by maximizing a scene probability function that is defined jointly using both individual object labels and their pairwise spatial relationships. The most consistent scene configuration is obtained by solving the maximization problem using linear optimization. Experiments on two different office data sets showed that incorporation of the real world spatial relationships as can textual information improved the overall detection performance. ©2009 IEEE.Item Open Access Bilkent University at TRECVID 2005(National Institute of Standards and Technology, 2005-11) Aksoy, Selim; Avcı, Akın; Balçık, Erman; Çavuş, Özge; Duygulu, Pınar; Karaman, Zeynep; Kavak, Pınar; Kaynak, Cihan; Küçükayvaz, Emre; Öcalan, Çağdaş; Yıldız, PınarWe describe our second-time participation, that includes one high-level feature extraction run, and three manual and one interactive search runs, to the TRECVID video retrieval evaluation. All of these runs have used a system trained on the common development collection. Only visual and textual information were used where visual information consisted of color, texture and edgebased low-level features and textual information consisted of the speech transcript provided in the collection. With the experience gained with our second-time participation, we are in the process of building a system for automatic classification and indexing of video archives.Item Open Access Bilkent university at TRECVID 2006(National Institute of Standards and Technology, 2006-11) Aksoy, Selim; Duygulu, Pınar; Akçay, Hüseyin Gökhan; Ataer, Esra; Baştan, Muhammet; Can, Tolga; Çavuş, Özge; Doǧgrusöz, Emel; Gökalp, Demir; Akaydın, Ateş; Akoǧlu, Leman; Angın, Pelin; Cinbiş, R. Gökberk; Gür, Tunay; Ünlü, MehmetWe describe our third participation, that includes one high-level feature extraction run, and two manual and one interactive search runs, to the TRECVID video retrieval evaluation. All of these runs have used a system trained on the common development collection. Only visual and textual information were used where visual information consisted of color, texture and edge-based low-level features and textual information consisted of the speech transcript provided in the collection.Item Open Access The systems biology graphical notation(Nature Publishing Group, 2009-08) Le Novère, N.; Hucka, M.; Mi, H.; Moodie, S.; Schreiber, F.; Sorokin, A.; Demir, Emek; Wegner, K.; Aladjem, M. I.; Wimalaratne, S. M.; Bergman, F. T.; Gauges, R.; Ghazal, P.; Kawaji, H.; Li, L.; Matsuoka, Y.; Villéger, A.; Boyd, S. E.; Calzone, L.; Courtot, M.; Doğrusöz, Uğur; Freeman, T. C.; Funahashi, A.; Ghosh, S.; Jouraku, A.; Kim, S.; Kolpakov, F.; Luna, A.; Sahle, S.; Schmidt, E.; Watterson, S.; Wu, G.; Goryanin, I.; Kell, D. B.; Sander, C.; Sauro, H.; Snoep, J. L.; Kohn, K.; Kitano, H.Circuit diagrams and Unified Modeling Language diagrams are just two examples of standard visual languages that help accelerate work by promoting regularity, removing ambiguity and enabling software tool support for communication of complex information. Ironically, despite having one of the highest ratios of graphical to textual information, biology still lacks standard graphical notations. The recent deluge of biological knowledge makes addressing this deficit a pressing concern. Toward this goal, we present the Systems Biology Graphical Notation (SBGN), a visual language developed by a community of biochemists, modelers and computer scientists. SBGN consists of three complementary languages: process diagram, entity relationship diagram and activity flow diagram. Together they enable scientists to represent networks of biochemical interactions in a standard, unambiguous way. We believe that SBGN will foster efficient and accurate representation, visualization, storage, exchange and reuse of information on all kinds of biological knowledge, from gene regulation, to metabolism, to cellular signaling. © 2009 Nature America, Inc.