Browsing by Subject "Textiles"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water(Elsevier, 2017-10) Sarioglu O.F.; S. Keskin, N. O.; Celebioglu A.; Tekinay, T.; Uyar, TamerIn this study, preparation and application of novel biocomposite materials for textile dye removal which are produced by immobilization of specific bacteria onto electrospun nanofibrous webs are presented. A textile dye remediating bacterial isolate, Clavibacter michiganensis, was selected for bacterial immobilization, a commercial reactive textile dye, Setazol Blue BRF-X, was selected as the target contaminant, and electrospun polycaprolactone (PCL) and polylactic acid (PLA) nanofibrous polymeric webs were selected for bacterial integration. Bacterial adhesion onto nanofibrous webs was monitored by scanning electron microscopy (SEM) imaging and optical density (OD) measurements were performed for the detached bacteria. After achieving sufficient amounts of immobilized bacteria on electrospun nanofibrous webs, equivalent web samples were utilized for testing the dye removal capabilities. Both bacteria/PCL and bacteria/PLA webs have shown efficient remediation of Setazol Blue BRF-X dye within 48 h at each tested concentration (50, 100 and 200 mg/L), and their removal performances were very similar to the free-bacteria cells. The bacteria immobilized webs were then tested for five times of reuse at an initial dye concentration of 100 mg/L, and found as potentially reusable with higher bacterial immobilization and faster dye removal capacities at the end of the test. Overall, these findings suggest that electrospun nanofibrous webs are available platforms for bacterial integration and the bacteria immobilized webs can be used as starting inocula for use in remediation of textile dyes in wastewater systems.Item Open Access Encapsulation of active agents in electrospun nanofibers/nanowebs(The Fiber Society, 2013) Kayaci, Fatma; Aytac, Zeynep; Celebioglu, Asli; Uyar, TamerIn this study, we produce functional nanofibers/nanowebs containing active agents such as essential oils, antibacterials, antioxidants, flavors/fragrances via electrospinning technique. The encapsulation of these active agents into electrospun nanofibers/nanowebs was quite possible, however, their stability and/or shelf-life was limited due to their volatile nature. Nevertheless, by forming cyclodextrin inclusion complexes (CD-IC) with these active agents and incorporating CD-IC into electrospun nanofibers/nanowebs, we achieved high temperature stability, slow release and prolonged shelf-life for these active agents. These functional electrospun nanofibers/nanowebs containing active agents can be quite applicable in active food packaging, textiles, biotechnology, etc.Item Open Access Robust superhydrophobic fabrics by infusing structured polydimethylsiloxane films(John Wiley & Sons, Inc., 2021-06-22) Celik, N.; Torun, I.; Ruzi, M.; Mustafa Serdar, ÖnsesSuperhydrophobic coatings have large application potential in self-cleaning textiles. Low durability, high cost of fabrication, and environmental concerns over the usage of chemicals such as fluorocarbons limit the utilization of superhydrophobic coatings. This study reports a convenient and inexpensive approach to fabricate robust and fluorine-free superhydrophobic fabrics based on the transfer of structured polymer films and hydrophobic nanoparticles. In this approach, polydimethylsiloxane (PDMS) is infused between sheets of fabric and paper, followed by curing and removal of the paper. This process results in a fabric infused with PDMS whose structure is a negative replica of the paper surface. Then, hydrophobic nanoparticles are sprayed onto the structured PDMS side of the fabric. The infusion of PDMS and subsequent deposition of the hydrophobic nanoparticles enables strong bonding, as shown by the excellent solvent stability of the superhydrophobic fabric under ultrasonication. The proposed approach is universal in that it can be applied to almost any textiles, which upon coating, exhibited superhydrophobicity with a water contact angle of 172° and a sliding angle of 3°. Furthermore, the superhydrophobic fabric showed robust durability against water spray impact and mechanical bending where it can keep superhydrophobicity for at least 200 cycles of each test.Item Open Access Tactile perception by friction induced vibrations(2011) Fagiani, R.; Massi, F.; Chatelet, E.; Berthier, Y.; Akay, A.When a finger moves to scan the surface of an object (haptic sensing), the sliding contact generates vibrations that propagate in the finger skin activating the receptors (mechanoreceptors) located in the skin, allowing the brain to identify objects and perceive information about their properties. The information about the surface of the object is transmitted through vibrations induced by friction between the skin and the object scanned by the fingertip. The mechanoreceptors transduce the stress state into electrical impulses that are conveyed to the brain. A clear understanding of the mechanisms of the tactile sensing is fundamental to numerous applications, like the development of artificial tactile sensors for intelligent prostheses or robotic assistants, and in ergonomics. While the correlation between surface roughness and tactile sensation has already been reported in literature, the vibration spectra induced by the finger-surface scanning and the consequent activation of the mechanoreceptors on the skin have received less attention. In this paper, frequency analysis of signals characterizing surface scanning is carried out to investigate the vibration spectrum measured on the finger and to highlight the changes shown in the vibration spectra as a function of characteristic contact parameters such as scanning speed, roughness and surface texture. An experimental set-up is developed to recover the vibration dynamics by detecting the contact force and the induced vibrations; the bench test has been designed to guarantee reproducibility of measurements at the low amplitude of the vibrations of interest, and to perform measurements without introducing external noise. Two different perception mechanisms, as a function of the roughness wavelength, have been pointed out. The spectrum of vibration obtained by scanning textiles has been investigated. © 2011 Elsevier Ltd. All rights reserved.