Browsing by Subject "Test collection"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Information retrieval on Turkish texts(John Wiley & Sons, Inc., 2008-02) Can, F.; Kocberber, S.; Balcik, E.; Kaynak, C.; Ocalan, H. C.; Vursavas, O. M.In this study, we investigate information retrieval (IR) on Turkish texts using a large-scale test collection that contains 408,305 documents and 72 ad hoc queries. We examine the effects of several stemming options and query-document matching functions on retrieval performance. We show that a simple word truncation approach, a word truncation approach that uses language-dependent corpus statistics, and an elaborate lemmatizer-based stemmer provide similar retrieval effectiveness in Turkish IR. We investigate the effects of a range of search conditions on the retrieval performance; these include scalability issues, query and document length effects, and the use of stop-word list in indexing. © 2007 Wiley Periodicals, Inc.Item Open Access Novelty detection for topic tracking(John Wiley & Sons, Inc., 2012) Aksoy, C.; Can, F.; Kocberber, S.Multisource web news portals provide various advantages such as richness in news content and an opportunity to follow developments from different perspectives. However, in such environments, news variety and quantity can have an overwhelming effect. New-event detection and topic-tracking studies address this problem. They examine news streams and organize stories according to their events; however, several tracking stories of an event/topic may contain no new information (i.e., no novelty). We study the novelty detection (ND) problem on the tracking news of a particular topic. For this purpose, we build a Turkish ND test collection called BilNov-2005 and propose the usage of three ND methods: a cosine-similarity (CS)-based method, a language-model (LM)-based method, and a cover-coefficient (CC)-based method. For the LM-based ND method, we show that a simpler smoothing approach, Dirichlet smoothing, can have similar performance to a more complex smoothing approach, Shrinkage smoothing. We introduce a baseline that shows the performance of a system with random novelty decisions. In addition, a category-based threshold learning method is used for the first time in ND literature. The experimental results show that the LM-based ND method significantly outperforms the CS- and CC-based methods, and categorybased threshold learning achieves promising results when compared to general threshold learning. © 2011 ASIS&T.