Browsing by Subject "Terahertz waves"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Broadband THz modulators based on multilayer graphene on PVC(IEEE, 2016) Kaya, E.; Kakenov, Nurbek; Kocabaş, Coşkun; Altan, H.; Esentürk, O.In this study we present the direct terahertz time-domain spectroscopic measurement of CVD-grown multilayer graphene (MLG) on PVC substrate with an electrically tunable Fermi level. In a configuration consisting MLG and injected organic dopant, the transmitted intensity loss of terahertz radiation was observed with an applied voltage between 0 and 3.5 V. We showed that MLG on PVC devices provided approximately 100 % modulation between 0.2 and 1.5 THz at preferentially low operation voltage of ca. 3V. The observed modulation bandwidth in terahertz frequencies appears to be instrument limited.Item Open Access Compressive sensing imaging with a graphene modulator at THz frequency in transmission mode(IEEE, 2016) Özkan, V. A.; Takan, T.; Kakenov, Nurbek; Kocabaş, Coşkun; Altan, H.In this study we demonstrate compressive sensing imaging with a unique graphene based optoelectronic device which allows us to modulate the THz field through an array of columns or rows distributed throughout its face.Item Open Access Development of a rapid-scan fiber-integrated terahertz spectrometer(Springer New York LLC, 2014) Keskin, H.; Altan, H.; Yavas, S.; Ilday, F. O.; Eken, K.; Sahin, A. B.Scientists in terahertz (THz) wave technologies have benefited from the recent developments in ultrafast laser technologies and RF technologies and applied these new gained techniques into characterizing a wide variety of phenomena. Undoubtedly, the most successful of these applications has been in the development of time-domain terahertz spectroscopic and imaging systems which has been utilized in the characterization of dielectrics and semiconductors. This pulsed technique has allowed users to characterize dynamical behavior inside materials under illumination with picosecond resolution. Typically pump/probe or similar dynamical measurements require the use of amplified pulses derived from free-space solid state lasers in the μJ-mJ range and since interferometric techniques are typically used in pulsed measurements the measurement time of a THz spectrum can last at least tens of minutes. Better systems can be realized based on fiber laser technologies. Here we discuss the advantages of a THz spectrometer driven by an ultrafast Ytterbium doped fiber laser whose repetition rate can be tuned rapidly allowing for rapid dynamical measurements. The efficient gain medium, robust operation and compact design of the system opens up the possibility of exploring rapid detection of various materials as well as studying dynamical behavior using the high brightness source.Item Open Access Focusing of THz waves with a microsize parabolic reflector made of graphene in the free space(Springer International Publishing, 2017) Oguzer T.; Altintas, A.; Nosich A.I.Background: The scattering of H- and E-polarized plane waves by a two-dimensional (2-D) parabolic reflector made of graphene and placed in the free space is studied numerically. Methods: To obtain accurate results we use the Method of Analytical Regularization. Results: The total scattering cross-section and the absorption cross-section are computed, together with the field magnitude in the geometrical focus of reflector. The surface plasmon resonances are observed in the H-case. The focusing ability of the reflector is studied in dependence of graphene’s chemical potential, frequency, and reflector’s depth. Conclusions: It is found that there exists an optimal range of frequencies where the focusing ability reaches maximum values. The reason is the quick degradation of graphene’s surface conductivity with frequency. © 2017, The Author(s).Item Open Access Millimeter-wave scale metamaterials(IEEE, 2009-11) Alıcı, Kamil Boratay; Özbay, EkmelWe review two metamaterial configurations, which are operating at the millimeter-wave scale, in terms of design, fabrication, and characterization. We observed both numerically and experimentally at around 100 GHz a narrow frequency band for which the metamaterial was low loss and had a negative index of refraction. We investigated flat and wedge shaped samples to support our characterization results. We analyzed the transmission band with respect to number of layers at the propagation direction and commented on the bulk nature of these metamaterials. Oblique response of the planar sample was also included in this study. Finally, we demonstrate a device, which yields a rather small angular width at the far field radiation pattern, and composed of a horn antenna and flat metamaterial slabs at the propagation direction. ©2009 IEEE.Item Open Access Observation of gate-tunable coherent perfect absorption of terahertz radiation in graphene(American Chemical Society, 2016) Kakenov, N.; Balci, O.; Takan, T.; Ozkan, V. A.; Altan, H.; Kocabas, C.We report experimental observation of electrically tunable coherent perfect absorption (CPA) of terahertz (THz) radiation in graphene. We develop a reflection-type tunable THz cavity formed by a large-area graphene layer, a metallic reflective electrode, and an electrolytic medium in between. Ionic gating in the THz cavity allows us to tune the Fermi energy of graphene up to 1 eV and to achieve a critical coupling condition at 2.8 THz with absorption of 99%. With the enhanced THz absorption, we were able to measure the Fermi energy dependence of the transport scattering time of highly doped graphene. Furthermore, we demonstrate flexible active THz surfaces that yield large modulation in the THz reflectivity with low insertion losses. We anticipate that the gate-tunable CPA will lead to efficient active THz optoelectronics applications.Item Open Access On-chip characterization of THz Schottky diodes using non-contact probes(IEEE Computer Society, 2016) Khan, T. M.; Ghobadi, A.; Celik, O.; Caglayan, C.; Bıyıklı, Necmi; Okyay, Ali Kemal; Topalli, K.; Sertel, K.We present non-contact characterization of GaAs Schottky contacts in the 140-220 GHz band. The non-contact probing technique utilizes planar on-chip antennas that are monolithically integrated with the coplanar waveguide environment housing the Schottky diode under test. The diode contact is fabricated through a 6 mask lithographic process with a 5 μm deep-trench under the contact to minimize parasitics and extend operation into the THz band. A quasi-optical link between the VNA ports and on-chip probe antennas enables efficient signal coupling into the test device. The non-contact probe station is calibrated using on-chip quick-offset-short method and the effectiveness of this approach is demonstrated for integrated diodes for under various bias conditions.Item Open Access Repetition rate tuning of an ultrafast ytterbium doped fiber laser for terahertz time-domain spectroscopy(IEEE, 2013) Keskin H.; Altan H.; Yavaş, Seydi; İlday, F. Ömer; Yagci, M.E.; Aydin O.; Eken, K.; Sahin, B.Repetition rate tuning enables the fast acquisition of THz pulse profiles [1]. By using this method we demonstrate a compact and broadband terahertz time domain spectroscopy system (THz TDS) driven by ytterbium doped fiber laser source. The importance of this method is realized in that Yb:doped fiber lasers can be amplified to sub-millijoule pulse strengths more easily than other types of fiber lasers [2]. Hence, it has the potential to be used in excite-THz probe experiments. Furthermore, the repetition rate-tuning adds flexibility in the excite-probe techniques. These attributes as well as THz generation and detection are investigated with the laser that was developed. © 2013 IEEE.Item Open Access Single and cascaded, magnetically controllable metasurfaces as terahertz filters(Optical Society of America OSA, 2016) Serebryannikov, A. E.; Lakhtakia, A.; Özbay, EkmelTransmission of a normally incident, linearly polarized, plane wave through either a single electrically thin metasurface comprising H-shaped subwavelength resonating elements made of magnetostatically controllable InAs or a cascade of several such metasurfaces was simulated in the terahertz regime. Stop bands that are either weakly or strongly controllable can be exhibited by a single metasurface by proper choice of the orientation of the magnetostatic field, and a ∼19%downshift of stop bands in the 0.1-5.5 THz spectral regime is possible on increasing the magnetostatic field strength from 0 to 1 T. Better controllability and wider bandwidths are possible by increasing the number of metasurfaces in a cascade, although increase of the total losses can lead to some restrictions. ON/OFF switching regimes, realizable either by applying/removing the magnetostatic field or just by changing its orientation, exist.Item Open Access Single and coupled metasurfaces for tunable polarization-sensitive terahertz filters(IEEE, 2016) Serebryannikov A.E.; Lakhtakia A.; Özbay, EkmelWe simulated the transmission of terahertz waves through a single metasurface and two coupled metasurfaces that comprise H-shaped subwavelength resonators made of InAs, a magnetically tunable material. The magnetostatic field was varied from 0 to 1 T. The obtained results demonstrate that the substrate permittivity and the coupling of metasurfaces can significantly affect filtering performance as well as the possibility of tuning for different orientations of the magnetostatic field. � 2016 IEEE.