Browsing by Subject "Terahertz time domain spectroscopy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Repetition rate tuning of an ultrafast ytterbium doped fiber laser for terahertz time-domain spectroscopy(IEEE, 2013) Keskin H.; Altan H.; Yavaş, Seydi; İlday, F. Ömer; Yagci, M.E.; Aydin O.; Eken, K.; Sahin, B.Repetition rate tuning enables the fast acquisition of THz pulse profiles [1]. By using this method we demonstrate a compact and broadband terahertz time domain spectroscopy system (THz TDS) driven by ytterbium doped fiber laser source. The importance of this method is realized in that Yb:doped fiber lasers can be amplified to sub-millijoule pulse strengths more easily than other types of fiber lasers [2]. Hence, it has the potential to be used in excite-THz probe experiments. Furthermore, the repetition rate-tuning adds flexibility in the excite-probe techniques. These attributes as well as THz generation and detection are investigated with the laser that was developed. © 2013 IEEE.Item Open Access Terahertz time-domain study of silver nanoparticles synthesized by laser ablation in organic liquid(IEEE Microwave Theory and Techniques Society, 2016-07) Koral, C.; Ortaç, B.; Altan, H.We report the investigation of laser-synthesized Ag nanoparticles (Ag-NPs) in an organic liquid environment by using terahertz time-domain spectroscopy (THz-TDS) technique. Colloidal Ag-NPs with an average diameter of 10 nm in two-propanol solution through nanosecond pulsed laser ablation were synthesized. THz-TDS measurements were performed on different volumetric concentration of Ag-NPs suspensions placed in 2-mm path length quartz cuvette. Due to the dispersive and highly absorptive nature of the nano liquids, an approach based on extracting the optical properties through the changes in amplitude and phase solely around the main peak of THz waveform is developed. This approach allowed for an accurate estimation of the complex refractive index of the Metallic-NPs suspension for the different prepared volumetric concentrations. In addition, using Maxwell-Garnett theory, the NP concentration is also extracted. This method shows that the time-domain nature of the THz pulse measurement technique is extremely useful in instances where slight variations in highly dispersive samples need to be investigated.