Browsing by Subject "Temperature-dependent material properties"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Experimental and finite element analysis of EDM process and investigation of material removal rate by response surface methodology(2013) Hosseini Kalajahi, M.; Rash Ahmadi, S.; Nadimi Bavil Oliaei, S.In this study, thermal modeling and finite element simulation of electrical discharge machining (EDM) has been done, taking into account several important aspects such as temperature-dependent material properties, shape and size of the heated zone (Gaussian heat distribution), energy distribution factor, plasma flushing efficiency, and phase change to predict thermal behavior and material removal mechanism in EDM process. Temperature distribution on the cathode has been calculated using ANSYS finite element code, and the effect of EDM parameters on heat distribution along the radius and depth of the workpiece has been obtained. Temperature profiles have been used to calculate theoretical material removal rate (MRR) from the cathode. Theoretically calculated MRRs are compared with the experimental results, making it possible to precisely determine the portion of energy that enters the cathode for AISI H13 tool steel. Also in this paper, the effect of EDM parameters on MRR has been investigated by using the technique of design of experiments and response surface methodology. Finally, a quadratic polynomial regression model has been proposed for MRR, and the accuracy of this model has been checked by means of analysis of residuals. © 2013 Springer-Verlag London.Item Open Access Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition(AIP Publishing LLC, 2016-02) Alevli, M.; Gungor, N.; Haider A.; Kizir S.; Leghari, S. A.; Bıyıklı, NecmiGallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N2/H2 plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties, the chemical composition, E1(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.