Browsing by Subject "Telecommunication systems--Design and construction."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Fiber optical network design problems : case for Turkey(2013) Yazar, BaşakThe problems within scope of this thesis are based on an application arising from one of the largest Internet service providers operating in Turkey. There are mainly two different problems: the green field design and copper field re-design. In the green field design problem, the aim is to design a least cost fiber optical network from scratch that will provide high bandwidth Internet access from a given central station to a set of aggregated demand nodes. Such an access can be provided either directly by installing fibers or indirectly by utilizing passive splitters. Insertion loss, bandwidth level and distance limitations should simultaneously be considered in order to provide a least cost design to enable the required service level. On the other hand, in the re-design of the copper field application, the aim is to improve the current service level by augmenting the network through fiber optical wires. Copper rings in the existing infrastructure are augmented with cabinets and direct fiber links from cabinets to demand nodes provide the required coverage to distant nodes. Mathematical models are constructed for both problem specifications. Extensive computational results based on real data from Kartal (45 points) and Bakırköy (74 points) districts in Istanbul show that the proposed models are viable exact solution methodologies for moderate dimensions.Item Open Access Hub & regenerator location and survivable network design(2010) Özkök, OnurWith the vast development of the Internet, telecommunication networks are employed in numerous different outlets. In addition to voice transmission, which is a traditional utilization, telecommunication networks are now used for transmission of different types of data. As the amount of data transmitted through the network increases, issues such as the survivability and the capacity of the network become more imperative. In this dissertation, we deal with both design and routing problems in telecommunications networks. Our first problem is a two level survivable network design problem. The topmost layer of this network consists of a backbone component where the access equipments that enable the communication of the local access networks are interconnected. The second layer connects the users on the local access network to the access equipments, and consequently to the backbone network. To achieve a survivable network, one that stays operational even under minor breakdowns, the backbone network is assumed to be 2-edge connected while local access networks are to have the star connectivity. Within the literature, such a network is referred to as a 2-edge connected/star network. Since the survivability requirements of networks may change based on the purposes they are utilized for, a variation of this problem in which local access networks are also required to be survivable is also analyzed. The survivability of the local access networks is ensured by providing two connections for every component of the local access networks to the backbone network. This architecture is known as dual homing in the literature. In this dissertation, the polyhedral analysis of the two versions of the two level survivable network design problem is presented; separation problems are analyzed; and branch-and-cut algorithms are developed to find exact solutions. The increased traffic on the telecommunications networks requires the use of high capacity components. Optical networks, composed of fiber optical cables, offer solutions with their higher bandwidths and higher transmission speeds. This makes the optical networks a good alternative to handle the rapid increase in the data traffic. However, due to signal degradation which makes signal regeneration necessary introduces the regenerator placement problem as signal regeneration is a costly process in optical networks. In the regenerator placement problem, we study a location and routing problem together on the backbone component of a given telecommunications network. Survivability is also considered in this problem simultaneously. Exact solution methodologies are developed for this problem: mathematical models and some valid inequalities are proposed; separation problems for the valid inequalities are analyzed and a branch-and-cut algorithm is devised.