BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Techniques used"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Signal processing for three-dimensional holographic television displays that use binary spatial light modulators
    (IEEE, 2010) Ulusoy, Erdem; Onural, Levent; Özaktaş, Haldun M.
    One of the important techniques used for three dimensional television (3DTV) is holography. In holographic 3DTV, spatial light modulators (SLM) are used as the display device. SLMs that provide the most limited modulation are the binary SLMs, since only two different values can be assigned to their pixels. An important signal processing problem arising here is the determination of the binary signal to be written on the SLM among the possible ones such that the desired light field is generated to the best extent. Many of the proposed methods do not produce satisfactory results in terms of error rate, computational performance or light efficiency. We propose an optical setup to be placed in front of the binary SLM and the associated signal processing algorithm. The proposed system uses a 4-f setup and a periodic mask is placed to the Fourier plane. As a result, the binary SLM is convolved with a series of regularly spaced impulse functions and we get a new SLM which is smaller in pixel count compared to binary SLM but which can provide 16-bit full complex modulation. It becomes easier to generate the desired light field with this new SLM. Also, the required computations are carried out in a fast manner to enable real-time operation. ©2010 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Theoretical and spectroscopic investigations on the structure and bonding in B-C-N thin films
    (2009) Bengu, E.; Genisel, M. F.; Gulseren, O.; Ovali, R.
    In this study, we have synthesized boron, carbon, and nitrogen containing films using RF sputter deposition. We investigated the effects of deposition parameters on the chemical environment of boron, carbon, and nitrogen atoms inside the films. Techniques used for this purpose were grazing incidence reflectance-Fourier-transform infrared spectroscopy (GIR-FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). GIR-FTIR experiments on the B-C-N films deposited indicated presence of multiple features in the 600 to 1700 cm- 1 range for the infrared (IR) spectra. Analysis of the IR spectra, XPS and the corresponding EELS data from the films has been done in a collective manner. The results from this study suggested even under nitrogen rich synthesis conditions carbon atoms in the B-C-N films prefer to be surrounded by other carbon atoms rather than boron and/or nitrogen. Furthermore, we have observed a similar behavior in the chemistry of B-C-N films deposited with increasing substrate bias conditions. In order to better understand these results, we have compared and evaluated the relative stability of various nearest-neighbor and structural configurations of carbon atoms in a single BN sheet using DFT calculations. These calculations also indicated that structures and configurations that increase the relative amount of C-C bonding with respect to B-C and/or C-N were energetically favorable than otherwise. As a conclusion, carbon tends to phase-segregate in to carbon clusters rather than displaying a homogeneous distribution for the films deposited in this study under the deposition conditions studied.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback