BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Task and motion planning"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemEmbargo
    Interpretable holistic manipulation strategies in household environments for task and motion planning
    (2025-01) Yenicesu, Arda Sarp
    Interpretable Responsibility Sharing (IRS) introduces a novel heuristic for Task and Motion Planning (TAMP), leveraging holistic manipulation strategies to enhance planning efficiency and interpretability in household environments. By systematically incorporating auxiliary objects such as trays and pitchers—common in human-constructed spaces—IRS simplifies and optimizes task execution. The heuristic is based on the concept of Responsibility Sharing (RS), where auxiliary objects share task responsibilities with robotic agents, dividing complex tasks into manageable sub-problems. This division not only mirrors human usage patterns but also aids robots in navigating and manipulating within human-designed spaces more effectively. By integrating Optimized Rule Synthesis (ORS) for decision-making, IRS ensures that the use of auxiliary objects is both strategic and context-aware, enhancing the interpretability and effectiveness of robotic planning. Experiments across diverse household tasks, including serving, pouring, and handover, demonstrate that IRS significantly outperforms traditional methods, reducing effort in task execution and improving decision-making. This approach aligns with human-inspired strategies while offering a scalable framework adaptable to the dynamic complexities of household environments.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Leveraging building material as part of the in-plane robotic kinematic system for collective construction
    (Advanced Science, 2022-06-24) Leder, S.; Kim, H.; Oguz, Ozgur Salih; Kalousdian, N. K.; Hartmann, V. N.; Menges, A.; Toussaint, M.; Sitti, M.
    Although collective robotic construction systems are beginning to showcasehow multi-robot systems can contribute to building construction by efficientlybuilding low-cost, sustainable structures, the majority of research utilizesnon-structural or highly customized materials. A modular collective roboticconstruction system based on a robotic actuator, which leverages timberstruts for the assembly of architectural artifacts as well as part of the robotbody for locomotion is presented. The system is co-designed for in-planeassembly from an architectural, robotic, and computer science perspective inorder to integrate the various hardware and software constraints into a singleworkflow. The system is tested using five representative physical scenarios.These proof-of-concept demonstrations showcase three tasks required forconstruction assembly: the ability of the system to locomote, dynamicallychange the topology of connecting robotic actuators and timber struts, andcollaborate to transport timber struts. As such, the groundwork for a futureautonomous collective robotic construction system that could addresscollective construction assembly and even further increase the flexibility ofon-site construction robots through its modularity is laid.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback