Browsing by Subject "Target nodes"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A distributed positioning algorithm for cooperative active and passive sensors(IEEE, 2010) Gholami, M.R.; Gezici, Sinan; Rydström, M.; Ström, E.G.The problem of positioning a target node is studied for wireless sensor networks with cooperative active and passive sensors. Two-way time-of-arrival and time-difference-of-arrival measurements made by both active and passive nodes are used to estimate the position of the target node. A maximum likelihood estimator (MLE) can be employed to solve the problem. Due to the nonlinear nature of the cost function in the MLE, an iterative search might converge to local minima which often results in large estimation errors. To avoid this drawback, we instead formulate the problem of positioning as finding the intersection of a number of convex sets derived from measurements. To obtain this intersection, we apply the projection onto convex sets approach, which is robust and can be implemented in a distributed manner. Simulations are performed to compare the performance of the MLE and the proposed method. ©2010 IEEE.Item Open Access Optimal jammer placement in wireless localization networks(IEEE, 2015-06-07) Gezici, Sinan; Bayram, S.; Gholami, M. R.; Jansson, M.The optimal jammer placement problem is proposed for a wireless localization network, where the aim is to degrade the accuracy of locating target nodes as much as possible. In particular, the optimal location of a jammer node is obtained in order to maximize the minimum of the Cramér-Rao lower bounds for a number of target nodes under location related constraints for the jammer node. Theoretical results are derived to specify scenarios in which the jammer node should be located as close to a certain target node as possible, or the optimal location of the jammer node is determined by two or three of the target nodes. In addition, explicit expressions for the optimal location of the jammer node are derived in the presence of two target nodes. Numerical examples are presented to illustrate the theoretical results. © 2015 IEEE.Item Open Access Positioning algorithms for cooperative networks in the presence of an unknown turn-around time(IEEE, 2011) Gholami, M.R.; Gezici, Sinan; Ström, E.G.; Rydström, M.This paper addresses the problem of single node positioning in cooperative network using hybrid two-way time-of-arrival and time-difference-of-arrival where, the turn-around time at the target node is unknown. Considering the turn-around time as a nuisance parameter, the derived maximum likelihood estimator (MLE) brings a difficult global optimization problem due to local minima in the cost function of the MLE. To avoid drawbacks in solving the MLE, we obtain a linear two-step estimator using non-linear pre-processing which is algebraic and closed-form in each step. To compare different methods, Cramér-Rao lower bound (CRLB) is derived. Simulation results confirm that the proposed linear estimator attains the CRLB for sufficiently high signal-to-noise ratios. © 2011 IEEE.