Browsing by Subject "TM polarization"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Metamaterial based cloaking with sparse distribution of spiral resonators(SPIE, 2010) Guven, K.; Saenz, E.; Gonzalo, R.; Özbay, Ekmel; Tretyakov, S.We investigate the application of a metamaterial that is formed by the sparse distribution of spiral resonators as an optical transformation medium is in order to achieve electromagnetic cloaking. The well-known Clausius-Mossotti formula relates the microscopic polarizability of a single resonant particle to the macroscopic permittivity and permeability of the effective medium. By virtue of transformation optics, the permittivity and permeability of the medium, in turn, can be designed according to a coordinate transformation that maps a certain region of space to its surrounding. As a result, the mapped region can be cloaked from electromagnetic waves. In this study, the spirals are optimized to exhibit equal permittivity and permeability response so that the cloak formed by these spirals will work for both the TE and TM polarizations. An experimental setup is developed to visualize the steady state propagation of electromagnetic waves within a parallel plate waveguide including the cloaking structure. The measured and simulated electromagnetic field image indicates that the forward scattering of a metal cylinder is significantly reduced when placed within the cloak. © 2010 SPIE.Item Open Access Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index dielectric shells(Optical Society of American (OSA), 2009) Serebryannikov, A.E.; Usik P.V.; Özbay, EkmelStrong reduction of the scattering cross section is obtained for subwavelength dielectric and conducting cylinders without any magnetism for both TE and TM polarizations. The suggested approach is based on the use of Fabry-Perot type radial resonances, which can appear in single-layer, high-ε, isotropic, and homogeneous shells with the properly chosen parameters. Frequencies of the minima of the scattering cross section, which are associated with the cloaking, typically depend on whether TE or TM polarization is considered. In some cases, large-positive-ε and largenegative-e objects can be cloaked. In other cases, non-ideal multifrequency cloaking can be realized. ©2009 Optical Society of America.