Browsing by Subject "Surface-enhanced Raman spectroscopy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Exploiting native Al2O3 for multispectral aluminum plasmonics(American Chemical Society, 2014) Ayas S.; Topal, A. E.; Cupallari, A.; Güner, H.; Bakan, G.; Dana, A.Aluminum, despite its abundance and low cost, is usually avoided for plasmonic applications due to losses in visible/infrared regimes and its interband absorption at 800 nm. Yet, it is compatible with silicon CMOS processes, making it a promising alternative for integrated plasmonic applications. It is also well known that a thin layer of native Al2O3 is formed on aluminum when exposed to air, which must be taken into account properly while designing plasmonic structures. Here, for the first time we report exploitation of the native Al2O3 layer for fabrication of periodic metal-insulator-metal (MIM) plasmonic structures that exhibit resonances spanning a wide spectral range, from the near-ultraviolet to mid-infrared region of the spectrum. Through fabrication of silver nanoislands on aluminum surfaces and MIM plasmonic surfaces with a thin native Al2O3 layer, hierarchical plasmonic structures are formed and used in surface-enhanced infrared spectroscopy (SEIRA) and surface-enhanced Raman spectrocopy (SERS) for detection of self-assembled monolayers of dodecanethiol. (Chemical Equation Presented). © 2014 American Chemical Society.Item Open Access Raman enhancement on a broadband meta-surface(American Chemical Society, 2012-07-30) Ayas S.; Güner, H.; Türker, B.; Ekiz, O. O.; Dirisaglik, F.; Okyay, Ali Kemal; Dâna, A.Plasmonic metamaterials allow confinement of light to deep subwavelength dimensions, while allowing for the tailoring of dispersion and electromagnetic mode density to enhance specific photonic properties. Optical resonances of plasmonic molecules have been extensively investigated; however, benefits of strong coupling of dimers have been overlooked. Here, we construct a plasmonic meta-surface through coupling of diatomic plasmonic molecules which contain a heavy and light meta-atom. Presence and coupling of two distinct types of localized modes in the plasmonic molecule allow formation and engineering of a rich band structure in a seemingly simple and common geometry, resulting in a broadband and quasi-omni-directional meta-surface. Surface-enhanced Raman scattering benefits from the simultaneous presence of plasmonic resonances at the excitation and scattering frequencies, and by proper design of the band structure to satisfy this condition, highly repeatable and spatially uniform Raman enhancement is demonstrated. On the basis of calculations of the field enhancement distribution within a unit cell, spatial uniformity of the enhancement at the nanoscale is discussed. Raman scattering constitutes an example of nonlinear optical processes, where the wavelength conversion during scattering may be viewed as a photonic transition between the bands of the meta-material.