BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Surface profile extraction"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements
    (Institute of Physics Publishing, 2000) Barshan, B.; Backent, D.
    Two novel methods for surface profile extraction based on multiple ultrasonic range measurements are described and compared. One of the methods employs morphological processing techniques, whereas the other employs a spatial voting scheme followed by simple thresholding. Morphological processing exploits neighbouring relationships between the pixels of the generated arc map. On the other hand, spatial voting relies on the number of votes accumulated in each pixel and ignores neighbouring relationships. Both approaches are extremely flexible and robust, in addition to being simple and straightforward. They can deal with arbitrary numbers and configurations of sensors as well as synthetic arrays. The methods have the intrinsic ability to suppress spurious readings, crosstalk and higher-order reflections, and process multiple reflections informatively. The performances of the two methods are compared on various examples involving both simulated and experimental data. The morphological processing method outperforms the spatial voting method in most cases with errors reduced by up to 80%. The effect of varying the measurement noise and surface roughness is also considered. Morphological processing is observed to be superior to spatial voting under these conditions as well.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Surface profile determination from multiple sonar data using morphological processing
    (Sage Publications Ltd., 1999-08) Başkent, D.; Barshan, B.
    This paper presents a novel method for surface profile determination using multiple sensors. Our approach is based on morphological processing techniques to fuse the range data from multiple sensor returns in a manner that directly reveals the target surface profile. The method has the intrinsic ability of suppressing spurious readings due to noise, crosstalk, and higher-order reflections, as well as processing multiple reflections informatively. The approach taken is extremely flexible and robust, in addition to being simple and straightforward. It can deal with arbitrary numbers and configurations of sensors as well as synthetic arrays. The algorithm is verified both by simulating and experiments in the laboratory by processing real sonar data obtained from a mobile robot. The results are compared to those obtained from a more accurate structured-light system, which is, however, more complex and expensive.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Surface profile determination from multiple sonar data using morphological processing
    (1998) Başkent, Deniz
    In this thesis, a novel method for surface profile determination using multiple sensors is presented. Our approach is based on morphological processing techniques to fuse the range data from multiple sensor returns in a manner that directly reveals the target surface profile. The method has the intrinsic ability of suppressing spurious readings due to noise, crosstalk, and higher-order reflections, as well as processing multiple reflections informatively. The approach taken is extremely flexible and robust, in addition to being simple and straightforward. It can deal with arbitrary numbers and configurations of sensors as well as synthetic arrays. The profil of any continuous surface with varying curvature can be extracted as long as the curvature of the surface is not too high. The average processing time of the method is of the order of several seconds indicating that the method is viable for real-time applications. The algorithm is verified both by simulations and experiments in the laboratory by processing real sonar data obtained from the Nomad 200 mobile robot. The results are compared to those obtained from a more accurate structured-light system, which is however more complex and expensive.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback