Browsing by Subject "Surface formulations"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Computational study of scattering from healthy and diseased red blood cells(Society of Photo Optical Instrumentation Engineers, 2010-08-05) Ergül, Özgür; Arslan-Ergül, A.; Gürel, LeventWe present a comparative study of scattering from healthy red blood cells (RBCs) and diseased RBCs with deformed shapes. Scattering problems involving three-dimensional RBCs are formulated accurately with the electric and magnetic current combined-field integral equation and solved efficiently by the multilevel fast multipole algorithm. We compare scattering cross section values obtained for different RBC shapes and different orientations. In this way, we determine strict guidelines to distinguish deformed RBCs from healthy RBCs and to diagnose various diseases using scattering cross section values. The results may be useful for designing new and improved flow cytometry procedures.Item Open Access Fast and accurate solutions of scattering problems involving dielectric objects with moderate and low contrasts(IEEE, 2007-08) Ergül, Özgür; Gürel, LeventWe consider the solution of electromagnetic scattering problems involving relatively large dielectric objects with moderate and low contrasts. Three-dimensional objects are discretized with Rao-Wilton-Glisson functions and the scattering problems are formulated with surface integral equations. The resulting dense matrix equations are solved iteratively by employing the multilevel fast multipole algorithm. We compare the accuracy and efficiency of the results obtained by employing various integral equations for the formulation of the problem. If the problem size is large, we show that a combined formulation, namely, electric-magnetic current combined-field integral equation, provides faster iterative convergence compared to other formulations, when it is accelerated with an efficient block preconditioner. For low-contrast problems, we introduce various stabilization procedures in order to avoid the numerical breakdown encountered in the conventional surface formulations. © 2007 IEEE.