Browsing by Subject "Support vector regression"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Fast multi-output relevance vector regression for joint groundwater and lake water depth modeling(Elsevier, 2022-08) Safari, M. J. S.; Rahimzadeh Arashloo, Shervin; Vaheddoost, B.Fast multi-output relevance vector regression (FMRVR) algorithm is developed for simultaneous estimation of groundwater and lake water depth for the first time in this study. The FMRVR is a multi-output regression analysis technique which can simultaneously predict multiple outputs for a multi-dimensional input. The data used in this study is collected from 34 stations located in the lake Urmia basin over a 40-year time period. The performance of the FMRVR model is examined in contrast to the support vector regression (SVR) and multi-linear regression (MLR) benchmarks. Results reveal that FMRVR is able to generate more accurate estimation for groundwater and lake water depth with coefficient of determination (R2) of 0.856 and 0.992 and root mean square error (RMSE) of 0.857 and 0.083, respectively. The outperformance of FMRVR can be linked to its capability for a joint estimation of multiple relevant outputs by taking into account possible correlations among the outputs.Item Open Access Image quality assessment using two-dimensional complex mel-cepstrum(SPIE, 2016) Cakir, S.; Çetin, A. EnisAssessment of visual quality plays a crucial role in modeling, implementation, and optimization of image-and video-processing applications. The image quality assessment (IQA) techniques basically extract features from the images to generate objective scores. Feature-based IQA methods generally consist of two complementary phases: (1) feature extraction and (2) feature pooling. For feature extraction in the IQA framework, various algorithms have been used and recently, the two-dimensional (2-D) mel-cepstrum (2-DMC) feature extraction scheme has provided promising results in a feature-based IQA framework. However, the 2-DMC feature extraction scheme completely loses image-phase information that may contain high-frequency characteristics and important structural components of the image. In this work, "2-D complex mel-cepstrum" is proposed for feature extraction in an IQA framework. The method tries to integrate Fourier transform phase information into the 2-DMC, which was shown to be an efficient feature extraction scheme for assessment of image quality. Support vector regression is used for feature pooling that provides mapping between the proposed features and the subjective scores. Experimental results show that the proposed technique obtains promising results for the IQA problem by making use of the image-phase information.Item Open Access Multiple kernel fusion: a novel approach for lake water depth modeling(Academic Press Inc, 2022-11-21) Safari, M.J.S.; Arashloo, Shervin Rahimzadeh; Vaheddoost, B.Multiple kernel fusion (MKF) refers to the task of combining multiple sources of information in the Hilbert space for improved performance. Very often the combined kernel is formed as a linear composition of multiple base kernels where the combination weights are learned from the data. As the first application of an MKF approach in hydrological modeling, lake water depth as one of the pivot factors in the reservoir analysis is simulated by considering different hydro-meteorological variables. The role of each individual input parameter is initially investigated by applying a kernel regression approach. We then illustrate the utility of an MKF formalism which learns kernel combination of weights to yield an optimal composition for kernel regression. A set of 40-year data collected from 27 groundwater and streamflow stations and 7 meteorological stations for precipitation and evaporation parameters in the vicinity of Lake Urmia are utilized for model development. Both visual and quantitative statistical performance criteria illustrate a superior performance for the MKF approach compared to kernel ridge regression (KRR), the support vector regression (SVR), back propagation neural network (BPNN) and auto regressive (AR) models. More specifically, while each individual input parameter fails to provide an ac curate prediction for lake water depth modeling, an optimal combination of all input parameters incorporating the groundwater level, streamflow, precipitation and evaporation via a multiple kernel learning approach en hances the predictive performance of the model accuracy in the multiple scenarios. The promising results (RMSE= 0.098 m; R2 = 0.987; NSE = 0.986) may motivate the application of a MKF approach towards solving alternative and complex hydrological problems.Item Open Access Sparse kernel regression technique for self-cleansing channel design(Elsevier Ltd, 2021-01) Safari, M. J.; Arashloo, Shervin RahimzadehThe application of a robust learning technique is inevitable in the development of a self-cleansing sediment transport model. This study addresses this problem and advocates the use of sparse kernel regression (SKR) technique to design a self-cleaning model. The SKR approach is a regression technique operating in the kernel space which also benefits from the desirable properties of a sparse solution. In order to develop a model applicable to a wide range of channel characteristics, five different experimental data sets from 14 different channels are utilized in this study. In this context, the efficacy of the SKR model is compared against the support vector regression (SVR) approach along with several other methods from the literature. According to the statistical analysis results, the SKR method is found to outperform the SVR and other regression equations. In particular, while empirical regression models fail to generate accurate results for other channel cross-section shapes and sizes, the SKR model provides promising results due to the inclusion of a channel parameter at the core of its structure and also by operating on an extensive range of experimental data. The superior efficacy of the SKR approach is also linked to its formulation in the kernel space while also benefiting from a sparse representation method to select the most useful training samples for model construction. As such, it also circumvent the requirement to evaluate irrelevant or noisy observations during the test phase of the model, and thus improving on the test phase running time.