Browsing by Subject "Superradiance"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Quantum correlated light pulses from sequential superradiance of a condensate(2009) Taşgin, M.E.; Oktel, M. Ö.; You L.; MüstecaplIoǧlu Ö.E.We discover an inherent mechanism for entanglement swap associated with sequential superradiance from an atomic Bose-Einstein condensate. Based on careful examinations with both analytical and numerical approaches, we conclude that as a result of the swap mechanism, Einstein-Podolsky-Rosen-type quantum correlations can be detected among the scattered light pulses. © 2009 The American Physical Society.Item Open Access Quantum entanglement via superradiance of a Bose-Einstein condensate(Institute of Physics Publishing, 2010) Taşgın, M. E.; Oktel, M. Ö.; You, L.; Müstecaploǧlu, Ö. E.We adopt the coherence and built-in swap mechanism in sequential superradiance as a tool for obtaining continuous-variable (electric/magnetic fields) quantum entanglement of two counter-propagating pulses emitted from the two end-fire modes. In the first-sequence, end-fire modes are entangled with the side modes. In the second sequence, this entanglement is swapped to in between the two opposite end-fire modes. Additionally, we also examine the photon number correlations. No quantum correlations is observed in this variable.Item Open Access Raman superradiance and spin lattice of ultracold atoms in optical cavities(IOP Institute of Physics Publishing, 2013) Safaei, S.; Müstecaplioǧlu, Ö. E.; Tanatar, BilalWe investigate the synthesis of a hyperfine spin lattice in an atomic Bose-Einstein condensate, with two hyperfine spin components, inside a one-dimensional high-finesse optical cavity, using off-resonant superradiant Raman scattering. Spatio-temporal evolution of the relative population of the hyperfine spin modes is examined numerically by solving the coupled cavity-condensate mean-field equations in the dispersive regime. We find, analytically and numerically, that beyond a certain threshold of the transverse laser pump, Raman superradiance and self-organization of the hyperfine spin components occur simultaneously and as a result a magnetic lattice is formed. The effects of an extra laser pump parallel to the cavity axis and the time dependence of the pump strength on the synthesis of a sharper lattice are also addressed.