Browsing by Subject "Superparamagnetic iron oxide"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Magnetic Particle Imaging (MPI) for NMR and MRI researchers(Elsevier, 2013) Sarıtaş, Emine ÜlküMagnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.Item Open Access Seeing SPIOs directly in vivo with magnetic particle imaging(Springer New York LLC, 2017) Zheng, B.; Yu, E.; Orendorff, R.; Lu, K.; Konkle, J. J.; Tay, Z. W.; Hensley, D.; Zhou, X. Y.; Chandrasekharan, P.; Saritas, E. U.; Goodwill, P. W.; Hazle, J. D.; Conolly, S. M.Magnetic particle imaging (MPI) is a new molecular imaging technique that directly images superparamagnetic tracers with high image contrast and sensitivity approaching nuclear medicine techniques—but without ionizing radiation. Since its inception, the MPI research field has quickly progressed in imaging theory, hardware, tracer design, and biomedical applications. Here, we describe the history and field of MPI, outline pressing challenges to MPI technology and clinical translation, highlight unique applications in MPI, and describe the role of the WMIS MPI Interest Group in collaboratively advancing MPI as a molecular imaging technique. We invite interested investigators to join the MPI Interest Group and contribute new insights and innovations to the MPI field.