Browsing by Subject "Styrofoam packaging"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Extraction of target features using infrared intensity signals(IEEE, 2005-09) Aytaç, Tayfun; Barshan, BillurWe propose the use of angular intensity signals obtained with low-cost infrared (IR) sensors and present an algorithm to simultaneously extract the geometry and surface properties of commonly encountered features or targets in indoor environments. The method is verified experimentally with planes, 90° corners, and 90° edges covered with aluminum, white cloth, and Styrofoam packaging material. An average correct classification rate of 80% of both geometry and surface over all target types is achieved and targets are localized within absolute range and azimuth errors of 1.5 cm and 1.1°, respectively. Taken separately, the geometry and surface type of targets can be correctly classified with rates of 99% and 81%, respectively, which shows that the geometrical properties of the targets are more distinctive than their surface properties, and surface determination is the limiting factor. The method demonstrated shows that simple IR sensors, when coupled with appropriate signal processing, can be used to extract substantially more information than such devices are commonly employed for.Item Open Access Target classification with simple infrared sensors using artificial neural networks(IEEE, 2008-10) Aytaç, T.; Barshan, BillurThis study investigates the use of low-cost infrared (IR) sensors for the determination of geometry and surface properties of commonly encountered features or targets in indoor environments, such as planes, corners, edges, and cylinders using artificial neural networks (ANNs). The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting target in a way which cannot be represented by a simple analytical relationship, therefore complicating the localization and classification process. We propose the use of angular intensity scans and feature vectors obtained by modeling of angular intensity scans and present two different neural network based approaches in order to classify the geometry and/or the surface type of the targets. In the first case, where planes, 90° corners, and 90° edges covered with aluminum, white cloth, and Styrofoam packaging material are differentiated, an average correct classification rate of 78% of both geometry and surface over all target types is achieved. In the second case, where planes, 90° edges, and cylinders covered with different surface materials are differentiated, an average correct classification rate of 99.5% is achieved. The method demonstrated shows that ANNs can be used to extract substantially more information than IR sensors are commonly employed for. © 2008 IEEE.