Browsing by Subject "Structure (composition)"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Adsorption site of alkali metal overlayers on Si(001) 2 × 1(1992) Batra, I. P.; Çıracı, SalimThe alkali metal semiconductor interfaces are currently being investigated by a variety of tools. Most studies to date at half a monolayer coverage have shown preference for either a quasi-hexagonal (H) site or a long-bridge (B) site. At this coverage one-dimensional chain structure for K on Si(001) 2 × 1 have now been confirmed by scanning tunneling microscopy (STM). The data, however, is consistent with either of the two sites. STM investigations at low coverages suggested that alkali metals like K and Cs occupy a novel site, Y, which is a bridge site between two Si atoms belonging to different dimers along the dimer row [110] direction. The total energy calculations for this new Y site, discovered by STM, have shown that it is indeed a site of (local) energy minimum. The ability of the surface silicon atoms, which are not adjacent to the alkali metal atom, to buckle makes the Y site a competitive adsorption site. We deduce the nature of bonding between alkali metals and Si using the STM data. It is concluded that the bond is substantially ionic in nature. © 1992.Item Open Access Fast and accurate analysis of large-scale composite structures with the parallel multilevel fast multipole algorithm(Optical Society of America, 2013) Ergül, Özgür; Gürel, LeventAccurate electromagnetic modeling of complicated optical structures poses several challenges. Optical metamaterial and plasmonic structures are composed of multiple coexisting dielectric and/or conducting parts. Such composite structures may possess diverse values of conductivities and dielectric constants, including negative permittivity and permeability. Further challenges are the large sizes of the structures with respect to wavelength and the complexities of the geometries. In order to overcome these challenges and to achieve rigorous and efficient electromagnetic modeling of three-dimensional optical composite structures, we have developed a parallel implementation of the multilevel fast multipole algorithm (MLFMA). Precise formulation of composite structures is achieved with the so-called "electric and magnetic current combined-field integral equation." Surface integral equations are carefully discretized with piecewise linear basis functions, and the ensuing dense matrix equations are solved iteratively with parallel MLFMA. The hierarchical strategy is used for the efficient parallelization of MLFMA on distributed-memory architectures. In this paper, fast and accurate solutions of large-scale canonical and complicated real-life problems, such as optical metamaterials, discretized with tens of millions of unknowns are presented in order to demonstrate the capabilities of the proposed electromagnetic solver.Item Open Access XPS characterization of Au (core)/SiO2 (shell) nanoparticles(American Chemical Society, 2005) Tunc, I.; Süzer, Şefik; Correa-Duarte, M. A.; Liz-Marzán, L. M.Core-shell nanoparticles with ca. 15-nm gold core and 6-nm silica shell were prepared and characterized by XPS. The Au/Si atomic ratio determined by XPS is independent of the electron takeoff angle because of the concentric spherical shape of the nanoparticles. The formula given by Wertheim and DiCenzo (Phys. Rev. B 1988, 37, 844) for spherical nanoparticles and the modified one by Yang et al. (J. Appl. Phys. 2005, 97, 024303) for core-shell nanoparticles are used to correlate the XPS-derived composition with the geometry of the nanoparticles only after significantly modifying either the bulk density of the silica shell or the attenuation length of the photoelectrons. © 2005 American Chemical Society.