Browsing by Subject "Structural studies"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Surface ionic states and structure of titanate nanotubes(Royal Society of Chemistry, 2015) Vempati S.; Kayaci-Senirmak, F.; Ozgit Akgun, C.; Bıyıklı, Necmi; Uyar, TamerHere we present an investigation on Zn-Ti-O ternary (zinc titanate) nanostructures which were prepared by a combination of electrospinning and atomic layer deposition. Depending on the ZnO and TiO2 molar ratio, two titanates and one mix phased compound were synthesized by varying the post-annealing temperatures. Specifically Zn2TiO4, ZnTiO3 and ZnO/TiO2 nanostructures were fabricated via thermal treatments (900, 700, 800 °C, respectively). Structural studies unveiled the titanate phase of the nanostructures. Furthermore, the ionic states of the titanate nanostructures on the surface are revealed to be Ti3+ and Zn2+. Spin-orbit splitting of Zn2p and Ti2p doublets were, however, not identical for all titanates which vary from 23.09-23.10 eV and 5.67-5.69 eV respectively. Oxygen vacancies were found on the surface of all titanates. The valance band region was analyzed for Zn3d, Ti3p, O2s and O2p and their hybridization, while the edge (below Fermi level) was determined to be at 2.14 eV, 2.00 eV and 1.99 eV for Zn2TiO4, ZnTiO3 and ZnO/TiO2 respectively.Item Open Access ZnO nanostructures on electrospun nanofibers by atomic layer deposition/hydrothermal growth and their photocatalytic activity(Materials Research Society, 2014) Kayaci, Fatma; Vempati, Sesha; Ozgit-Akgun, Cagla; Biyikli, Necmi; Uyar, TamerA hierarchy of nanostructured-ZnO was fabricated on the electrospun nanofibers by atomic layer deposition (ALD) and hydrothermal growth, subsequently. Firstly, we produced poly(acrylonitrile) (PAN) nanofibers via electrospinning, then ALD process provided a highly uniform and conformai coating of polycrystalline ZnO with a precise control on the thickness (50 nm). In the last step, this ZnO coating depicting dominant oxygen vacancies and significant grain boundaries was used as a seed on which single crystalline ZnO nanoneedles (average diameter and length of ∼25 nm and ∼600 nm, respectively) with high optical quality were hydrothermally grown. The detailed morphological and structural studies were performed on the resulting nanofibers, and the photocatalytic activity (PCA) was tested with reference to the degradation of methylene blue. The results of PCA were discussed in conjunction with photoluminescence response. The nanoneedle structures supported the vectorial transport of photo-charge carriers, which is crucial for high catalytic activity. The enhanced PCA, structural stability and reusability of the PAN/ZnO nanoneedles indicated that this hierarchical structure is a potential candidate for waste water treatment.