Browsing by Subject "Stress effects"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Analytical and experimental study of imperfections, stress, and temperature effects in circular MEMS gyroscopes(2024-02) Hosseini-Pishrobat, MehranInspired by the outstanding performance of the hemispherical resonator gyroscopes (HRG), MEMS gyroscopes with circularly symmetric structures are a promising candidate for the next generation of high-performance, cost-effective gyroscopes. However, scaling down to MEMS poses certain performance-limiting challenges: increased sensitivity to inevitable fabrication imperfections and environmental variations, chiefly stress and temperature, that perturb the gyroscope’s ideal modal space and result in quadrature/in-phase errors and, more importantly, long-term drift. Understanding these limiting factors is imperative for harnessing the full potential of circular MEMS gyroscopes. This thesis approaches this objective through an analytical modeling viewpoint. Here, “analytical” is meant to connote an approach based on the physics underlying the gyroscopes’ operation as described by the variational principles of solid mechanics. For the experimental evaluations, we use our fabricated double-ring vibrating ring gyroscope (VRG) (3.2 mm-diameter, 57-59 kHz) and 10-ring disk resonator gyroscope (DRG) (3.4 mm-diameter, 41 kHz). We start by calculating the mode shapes of the entire structure of multi-ring gyroscopes in the presence of structural imperfections and elastic anisotropy. By deriving the gyroscope’s nonideal drive-sense transfer function matrix, we provide rigorous definitions for the quadrature and in-phase outputs, highlighting the role of angular gain, frequency split, mode shape rotations, and quadrature leakage into the in-phase due to the sense mode’s phase error. Next, we present a model for the effects of mechanical stresses leading to the concept of stress stiffness, an additional stiffness induced by such stresses through geometric nonlinearity. We carry out an eigenvalue perturbation analysis to obtain the frequency shifts, mode shape rotations, and quadrature/in-phase errors generated by the stress stiffness. Taking advantage of the circular geometry, we have equipped our ring gyroscopes with 16 capacitive stress sensors located 45◦-apart (eight inside and eight outside the main ring), which pick up the local stress at the substrate level. We present an interpolation scheme to reconstruct the substrate’s stress field using the outputs of the stress sensors, providing us with the mechanical stresses responsible for the stress stiffness in the silicon layer. We validate the model based on PCB bending tests. We finally set out a modeling framework for temperature effects in ring gyroscopes. Our temperature experiments gave temperature coefficient of frequencies (TCFs), such as -10 ppm/◦C and -14 ppm/◦C, that are considerably different than the TCF value ~-30 ppm/◦C expected from the ~-60 ppm/◦C temperature dependency of Young’s modulus of silicon. The model revolves around the engendered stiffness and opposing interaction of two fundamental mechanisms of temperature effects: changes in material properties and thermal stresses. The model demonstrates remarkable efficacy in accurately predicting the TCF and sheds light on residual stresses’ role in forming frequency-temperature hysteresis loops. Considering the great potential of integrating stress with temperature for the long-term performance improvement of MEMS gyroscopes, the results of this thesis serve as a building block toward physics-informed drift compensation algorithms.Item Open Access Stress effects in prism coupling measurements of thin polymer films(Springer, 2005) Agan, S.; Ay, F.; Kocabas, A.; Aydınlı, AtillaDue to the increasingly important role of some polymers in optical waveguide technologies, precise measurement of their optical properties has become important. Typically, prism coupling to slab waveguides made of materials of interest is used to measure the relevant optical parameters. However, such measurements are often complicated by the softness of the polymer films when stress is applied to the prism to couple light into the waveguides. In this work, we have investigated the optical properties of three different polymers, polystyrene (PS), polymethyl-methacrylate (PMMA), and benzocyclobutane (BCB). For the first time, the dependence of the refractive index, film thickness, and birefringence on applied stress in these thin polymer films was determined by means of the prism coupling technique. Both symmetric trapezoid shaped and right-angle prisms were used to couple the light into the waveguides. It was found that trapezoid shaped prism coupling gives better results in these thin polymer films. The refractive index of PMMA was found to be in the range of 1.4869 up to 1.4876 for both TE and TM polarizations under the applied force, which causes a small decrease in the film thickness of up to 0.06 μm. PMMA waveguide films were found not to be birefringent. In contrast, both BCB and PS films exhibit birefringence albeit of opposing signs.