Browsing by Subject "Stress (Physiology)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Unknown Lipotoxic endoplasmic reticulum stress-associated inflammation : molecular mechanisms and modification by a bioactive lipokine(2012) Demirsoy, ŞeymaPhysiologic or pathologic processes that disturb protein folding in the endoplasmic reticulum (ER) activate a signaling pathway named the unfolded protein response (UPR). UPR promotes cell survival by reducing misfolded protein levels. The three proximal stress sensors of the UPR are known as PKR-resemble like ER kinase (PERK), inositol-requiring enzyme-1 (IRE1) and activating transcription factor 6 (ATF6), which monitor the quality of protein folding in the ER membrane and relay that information to the rest of the cell. If ER homeostasis can not be restored, prolonged UPR signaling can lead to cell death. Recent studies have shown metabolic overload, particularly high levels of fatty acids and cholesterol can induce ER stress and activate UPR signaling. These studies also demonstrated ER stress is a central mechanism that underlies the pathogenesis of metabolic diseases including obesity, type 2 diabetes, insulin resistance, atherosclerosis and hepatosteatosis. Understanding how nutrient excess activates the UPR and its novel molecular mechanisms of operation during metabolic stress could facilitate the development of novel and effective future therapeutics aiming to restore ER homeostasis. The molecular mechanisms of lipid induced activation of UPR and how the three proximal UPR stress sensors are linked to lipid metabolism and inflammation is not well understood. One of the UPR stress sensors, PERK, is a trans-membrane serine/threonine kinase with only two known downstream substrates, the eukaryotic translation initiation factor (eIF2) that controls translation initiation, and an antioxidant transcription factor, Nuclear factor eryhthroid-2-related factor-2 (Nrf2), that keeps redox homeostasis. One of the existing road blocks in studying PERK signaling has been the lack of molecular or chemical tools to regulate its activity. For my thesis studies, I developed a chemical-genetic approach to specifically modify PERK’s kinase activity. In this approach, the ATP binding pocket of a particular kinase is altered via site-directed mutagenesis in order to accommodate a bulky ATP analog that is not an effective substrate for the wild type kinase. Thus, only the mutated kinase can be targeted by the activatory or inhibitory bulky ATP analogs and this form of the kinase is referred to as ATP analog sensitive kinase (ASKA). Furthermore, I identified specific siRNA sequences that can be efficiently delivered to mouse macrophages and significantly reduce PERK expression. Both of these methods can be applied to study the direct impact of PERK activity on lipotoxic ER stress- associated inflammation. The results of the siRNA mediated PERK expression silencing experiments showed that PERK has a direct contribution to lipid-induced pro-inflammatory response in macrophages. Finally, I examined whether palmitoleate, a bioactive monounsaturated fatty acid previously shown to reduce lipid-induced ER stress and death, could also modify lipotoxic ER stress-associated inflammation. Based on the results from my experiments, palmitoleate is highly effective in preventing lipid induce inflammation. Unexpectedly, I also observed that palmitoleate could significantly block LPS-induced inflammation, too. In summary, during my thesis study I generated several useful tools including siRNA mediated knock-down of PERK and a novel chemical-genetic tool to directly and specifically modify PERK kinase activity. The findings from my studies demonstrate that PERK plays a significant role in lipid-induced inflammation, suggesting modification of PERK activity or its direct pro-inflammatory substrates could become desirable approaches to inhibit obesity-induced inflammation that contributes to the pathogenesis of diabetes and atherosclerosis. The outcome of my studies also showed that palmitoleate can significantly reduce lipotoxic-ER stress associated inflammation, which may explain its beneficial impact on both insulin resistance and atherosclerosis. Furthermore, the ATP-analog sensitive PERK mutant developed in my thesis can be coupled with proteomics to identify the full repertoire of PERK substrates during metabolic stress. In conclusion, the findings and tools developed in my thesis studies can form the basis of future studies to identify the molecular details of PERK’s involvement in lipid induced inflammation, the identification of novel PERK substrates during metabolic stress and the development of new therapeutic strategies against metabolically induced inflammation in obesity, diabetes and atherosclerosis.Item Unknown The role of Protein Kinase R in lipotoxicity(2013) Yağabasan, BüşraEndoplasmic reticulum (ER) is a central organelle for cellular homeostasis through its myriad of functions including protein and lipid biosynthesis, protein folding and secretion and calcium homeostasis. When protein folding or secretion is disrupted, ER elicits a unique signaling response initiated at its membranes called the unfolded protein response (UPR). UPR attempts to restore cellular homeostasis and survival via reducing unfolded protein levels, however, if this cannot be achieved or the stress is prolonged the UPR could lead to apoptosis. Three specific ER membrane proteins, inositol-requiring enzyme-1 (IRE1), Protein Kinase R-resemble like ER kinase (PERK) and activating transcription factor 6 (ATF6), act as ER stress sensors and initiate distinct but interlaced signaling pathways to restore ER homeostasis. Recently, studies demonstrated that over nutrition, especially high amount of saturated fatty acids or cholesterol in the circulation, leads to the induction of ER stress in metabolic tissues, resulting in the activation of UPR signaling pathways. Furthermore, ER stress was shown to play a causal role in the pathogenesis of metabolic diseases such as obesity, insulin resistance, type 2 diabetes and atherosclerosis. Interferon inducible double strand RNA activated protein kinase R (PKR) is also known to be activated during ER stress. Recent studies showed it can be activated by lipids during ER stress in cells and in metabolic tissues of obese mice. Genetic ablation or inhbition of PKR enhances systemic glucose homeostasis and insulin sensitivity in obesity in rodent models. However, it is not known how PKR becomes activated by overnutrition or by ER stress. In fact, many of the specific cellular components and molecular mechanisms in lipid induced cellular stress or death, namely lipotoxicity, is not completely understood. PKR is one of the serine/threonine kinase that is known to be activated during lipid induced ER stress, but only a few specific downstream substrates are known and these fall short of explaining PKR’s role in lipotoxicity in chronic metabolic disease pathogenesis. PKR also plays a crucial role in activation of inflammasomes through interacting with the inflammasome components. There is a gap in our knowledge regarding PKR’s specific molecular actions in nutrient-induced inflammation and metabolism in chronic metabolic diseases. In this thesis study, my major goal was to develop specific tools to modulate PKR’s activity and search for its specific substrates in lipotoxicity and its role in mediating lipid-induced ER stress response. For this purpose, I developed a novel chemical-genetic approach to specifically modify PKR’s kinase activity during ER stress. In this approach, the bulky sidechain of a gatekeeper amino acid (such as methionine) in the ATP binding cavity of PKR has been altered to a smaller side-chain amino acid (such as glycine) in order to slightly enlarge the cavity to accommodate bulky ATP analogs (activating or inhibiting). This mutant of the PKR has been named the analog sensitive kinase allele (ASKA) of PKR and was shown to utilize normal ATP as well as the bulky ATP analogs in kinase reactions. Furthermore, I demonstrated the specific inhibition of PKR kinase with the inhibitory, bulky ATP analogs such as4-Amino-1-tert-butyl-3-(1’-naphthyl)pyrazolo[3,4-d]pyrimidine (NAPP1) or 4-Amino- 1-tert-butyl-3-(1’-naphthylmethyl)pyrazolo[3,4-d]pyrimidine (1-NMPP1). In order to move one step closer to identification of potential PKR substrates, I also optimized kinase reactions for immunoprecipitated PKR ASKA mutant and visualized several potential downstream substrates in my initial experiments Finally, I studied a unique relationship between two ER stress related kinases IRE1 and PKR in lipid induced ER stress conditions. I observed specific inhibition of IRE1’s endoribonuclease activity with an inhibitor, but not its kinase activity, completely blocks PKR activation by lipids. These findings strongly support hat IRE1’s RNAse activity is necessary for PKR kinase activation by lipids. This function of IRE1 RNAse domain is novel and unsuspected. The future goals of this research should be directed to discovering the RNA mediators of IRE1-PKR coupling and understanding their role in mediating the inflammatory and metabolic pathologies associated with chronic metabolic diseases. In conclusion, in my thesis study, I developed novel chemical-genetic approach to specifically modify PKR kinase activity that could be useful in discovering novel PKR substrates. Based on the preliminary findings in this thesis, PKR appears to have many unidentified substrates regulated during lipid induced ER stress. Furthermore, using the chemical-genetic PKR as a tool as well as several other approaches I demonstrated the existence of a unique, functional relationship between IRE1 and PKR in lipotoxicity. In addition, the results in my thesis shows that IRE1’s endoribonuclease activity is required and sufficient for PKR kinase activation by lipids. These findings and tools developed during my studies can be further utilized for analyzing the specific role of PKR in lipotoxicity, which is important for the health consequences of metabolic diseases.