Browsing by Subject "Stream processing systems"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access CAPSULE: Language and system support for efficient state sharing in distributed stream processing systems(ACM, 2012) Losa, G.; Kumar, V.; Andrade, H.; Gedik, Buğra; Hirzel, M.; Soulé, R.; Wu, K. -L.Data stream processing applications are often expressed as data flow graphs, composed of operators connected via streams. This structured representation provides a simple yet powerful paradigm for building large-scale, distributed, high-performance applications. However, there are many tasks that require sharing data across operators, and across operators and the runtime using a less structured mechanism than point-to-point data flows. Examples include updating control variables, sending notifications, collecting metrics, building collective models, etc. In this paper we describe CAPSULE, which fills this gap. CAPSULE is a code generation and runtime framework that offers an easy to use and highly flexible framework for developers to realize shared variables (CAPSULE term for shared state) by specifying a data structure (at the programming-language level), and a few associated configuration parameters that qualify the expected usage scenario. Besides the easy of use and flexibility, CAPSULE offers the following important benefits: (1) Custom Code Generation - CAPSULE makes use of user-specified configuration parameters and information from the runtime to generate shared variable servers that are tailored for the specific usage scenario, (2) Composability - CAPSULE supports deployment time composition of the shared variable servers to achieve desired levels of scalability, performance and fault-tolerance, and (3) Extensibility - CAPSULE provides simple interfaces for extending the CAPSULE framework with more protocols, transports, caching mechanisms, etc. We describe the motivation for CAPSULE and its design, report on its implementation status, and then present experimental results. Copyright © 2012 ACM.Item Open Access Generic windowing support for extensible stream processing systems(John Wiley & Sons Ltd., 2014) Gedik, B.Stream processing applications process high volume, continuous feeds from live data sources, employ data-in-motion analytics to analyze these feeds, and produce near real-time insights with low latency. One of the fundamental characteristics of such applications is the on-the-fly nature of the computation, which does not require access to disk resident data. Stream processing applications store the most recent history of streams in memory and use it to perform the necessary modeling and analysis tasks. This recent history is often managed using windows. All data stream management systems provide some form of windowing functionality. Windowing makes it possible to implement streaming versions of the traditionally blocking relational operators, such as streaming aggregations, joins, and sorts, as well as any other analytic operator that requires keeping the most recent tuples as state, such as time series analysis operators and signal processing operators. In this paper, we provide a categorization of different window types and policies employed in stream processing applications and give detailed operational semantics for various window configurations. We describe an extensibility mechanism that makes it possible to integrate windowing support into user-defined operators, enabling consistent syntax and semantics across system-provided and third-party toolkits of streaming operators. We describe the design and implementation of a runtime windowing library that significantly simplifies the construction of window-based operators by decoupling the handling of window policies and operator logic from each other. We present our experience using the windowing library to implement a relational operators toolkit and compare the efficacy of the solution to an earlier implementation that did not employ a common windowing library. Copyright © 2013 John Wiley & Sons, Ltd.