Browsing by Subject "Stimulated-emission"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue-to red-shifting (and non-shifting) amplified spontaneous emission(American Chemical Society, 2013-11-21) Cihan, A. F.; Kelestemur, Y.; Guzelturk, B.; Yerli, O.; Kurum, U.; Yaglioglu, H. G.; Elmali, A.; Demir, Hilmi VolkanTunable, high-performance, two-photon absorption (TPA)-based amplified spontaneous emission (ASE) from near-unity quantum efficiency colloidal quantum dots (CQDs) is reported. Besides the absolute spectral tuning of ASE, the relative spectral tuning of ASE peak with respect to spontaneous emission was shown through engineering excitonic interactions in quasi-type-II CdSe/CdS core/shell CQDs. With core shell size adjustments, it was revealed that Coulombic exciton-exciton interactions can be tuned to be attractive (type-I-like) or repulsive (type-II-like) leading to red- or blue-shifted ASE peak, respectively, and that nonshifting ASE can be achieved with the right core shell combinations. The possibility of obtaining ASE at a specific wavelength from both type-I-like and type-II-like CQDs was also demonstrated. The experimental observations were supported by parametric quantum-mechanical modeling, shedding light on the type-tunability. These excitonically engineered CQD-solids exhibited TPA-based ASE threshold as low as 6.5 mJ/cm(2) under 800 nm excitation, displaying one of the highest values of TPA cross-section of 44 660 GM.Item Open Access Ultralow threshold one-photon-and two-photon-pumped optical gain media of blue-emitting colloidal quantum dot films(American Chemical Society, 2014) Guzelturk, B.; Kelestemur, Y.; Akgul, M. Z.; Sharma, V. K.; Demir, Hilmi VolkanColloidal quantum dots (QDs) offer advantageous properties as an optical gain media for lasers. Optical gain in the QDs has been shown in the whole visible spectrum, yet it has been intrinsically challenging to realize efficient amplified spontaneous emission (ASE) and lasing in the blue region of the visible spectrum. Here, we synthesize large-sized core/gradient shell CdZnS/ZnS QDs as an efficient optical gain media in the blue spectral range. In this Letter, we demonstrate for the first time that two-photon-absorption-pumped ASE from the blue-emitting QD is achievable with a threshold as low as 6 mJ/cm(2). Utilizing these QDs, we also report one-photon-absorption-pumped ASE at an ultralow threshold of similar to 60 mu J/cm(2), which is comparable to the state-of-the-art red-emitting QD-based gain media. This one-photon-pumped ASE threshold is an order of magnitude better than that of the previously reported best blue-emitting QD-based gain media.