Browsing by Subject "Stemness"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access IKKs and tumor cell plasticity(Wiley-Blackwell Publishing Ltd., 2018) Göktuna, Serkan İsmail; Diamanti, M. A.; Chau, T. L.Nuclear factor κB (NF-κB) transcription factors are the central hubs of signaling pathways connecting proinflammatory signals to cell survival, proliferation and cytokine production. In cancers, NF-κB signaling influences many aspects of tumor development, from initiation to metastasis. These functions are mediated by tumor-induced plasticity that allows tumor cells to adapt and survive in changing conditions within the tumor microenvironment. Tumor cell plasticity is shaped by the inflammatory microenvironment in tumors. This review focuses on inhibitor of NF-κB kinases, the direct upstream elements of NF-κB regulation, specifically on their conventional and non-conventional functions in animal models of tumorigenesis from the recent literature.Item Open Access MicroRNas: master regulators of drug resistance, stemness and metastasis(Springer Berlin Heidelberg, 2014-04) Raza, U.; Zhang, J. D.; Şahin, Ö.MicroRNAs (miRNAs) are 20-22 nucleotides long small non-coding RNAs that regulate gene expression post-transcriptionally. Last decade has witnessed emerging evidences of active roles of miRNAs in tumor development, progression, metastasis, and drug resistance. Many factors contribute to their dysregulation in cancer, such as chromosomal aberrations, differential methylation of their own or host genes' promoters and alterations in miRNA biogenesis pathways. miRNAs have been shown to act as tumor suppressors or oncogenes depending on the targets they regulate and the tissue where they are expressed. Because miRNAs can regulate dozens of genes simultaneously and they can function as tumor suppressors or oncogenes, they have been proposed as promising targets for cancer therapy. In this review, we focus on the role of miRNAs in driving drug resistance and metastasis which are associated with stem cell properties of cancer cells. Furthermore, we discuss systems biology approaches to combine experimental and computational methods to study effects of miRNAs on gene or protein networks regulating these processes. Finally, we describe methods to target oncogenic or replace tumor suppressor miRNAs and current delivery strategies to sensitize refractory cells and to prevent metastasis. A holistic understanding of miRNAs' functions in drug resistance and metastasis, which are major causes of cancer-related deaths, and the development of novel strategies to target them efficiently will pave the way towards better translation of miRNAs into clinics and management of cancer therapy. © 2014 Springer-Verlag Berlin Heidelberg.