BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Steam condensers"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quantum correlated light pulses from sequential superradiance of a condensate
    (2009) Taşgin, M.E.; Oktel, M. Ö.; You L.; MüstecaplIoǧlu Ö.E.
    We discover an inherent mechanism for entanglement swap associated with sequential superradiance from an atomic Bose-Einstein condensate. Based on careful examinations with both analytical and numerical approaches, we conclude that as a result of the swap mechanism, Einstein-Podolsky-Rosen-type quantum correlations can be detected among the scattered light pulses. © 2009 The American Physical Society.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quantum correlations among superradiant bose-einstein condensate atoms
    (M A I K Nauka - Interperiodica, 2010) Taşgin, M. E.; Öztop, B.; Oktel, M. Ö.; Müstecapliog̃lu, Ö. E.
    Quantum correlations among atoms in superradiant Bose-Einstein condensates are discussed. It is shown that atoms in the superradiant atomic condensate can exhibit continuous variable quantum entanglement analogous to Einstein-Podolsky-Rosen (EPR)-type quantum correlations. Comparison to quantum entanglement in the Dicke model in thermal equilibrium is provided.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quantum entanglement via superradiance of a Bose-Einstein condensate
    (Institute of Physics Publishing, 2010) Taşgın, M. E.; Oktel, M. Ö.; You, L.; Müstecaploǧlu, Ö. E.
    We adopt the coherence and built-in swap mechanism in sequential superradiance as a tool for obtaining continuous-variable (electric/magnetic fields) quantum entanglement of two counter-propagating pulses emitted from the two end-fire modes. In the first-sequence, end-fire modes are entangled with the side modes. In the second sequence, this entanglement is swapped to in between the two opposite end-fire modes. Additionally, we also examine the photon number correlations. No quantum correlations is observed in this variable.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Vortex lattice of a Bose-Einstein condensate as a photonic band gap material
    (IOP Institute of Physics Publishing, 2009) Taşgin, M. E.; Müstecaplioǧlu, Ö. E.; Oktel, M. Ö.
    Photonic crystal behavior of a rotating Bose-Einstein condensate with a triangular vortex lattice is reviewed and a scheme for getting much wider band gaps is proposed. It is shown that photonic band gaps can be widened an order of magnitude more by using a Raman scheme of index enhancement, in comparison to previously considered upper level microwave scheme.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback